Abundance, characterization, and health risk evaluation of microplastics in borehole water in Birnin Kebbi, Nigeria

Microplastic pollution has become a global menace, and water, being a major "sink" for pollutants, represents a significant source of human exposure. This study aimed to assess the safety of borehole water in Birnin Kebbi, Nigeria, specifically concerning microplastic pollution. Water samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental analysis, health and toxicology health and toxicology, 2024-06, Vol.39 (2), p.e2024017
Hauptverfasser: Yahaya, Tajudeen, Adewale, Mutiyat Kehinde, Ibrahim, Abdulgafar Bala, Abdulkadir, Baliqees, Emmanuela, Chikelu Chinelo, Fari, Adamu Zainab, Attahiru, Asiya Koko, Wanda, Joseph Dahali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microplastic pollution has become a global menace, and water, being a major "sink" for pollutants, represents a significant source of human exposure. This study aimed to assess the safety of borehole water in Birnin Kebbi, Nigeria, specifically concerning microplastic pollution. Water samples were collected from boreholes in selected areas, including Bayan Kara, Malali, Rafin Atiku, Aliero Quarters, GwadanGaji, FUBK Takeoff Site, Kalgo Market, and Tarasa. Microplastics were extracted from the water samples through filtration using glass fiber filter papers, and were subsequently subjected to spectroscopy and microscopy to determine concentrations, shapes, and polymer types. Health risks associated with the microplastics were also calculated. The results revealed that the samples from Tarasa exhibited the highest concentrations of microplastics (96.967 particles/L), followed by Bayan Kara (92.70 particles/L), Rafin Atiku (92.33 particles/L), GwadanGwaji (92.30 particles/L), FUBK Takeoff Site (91.07 particles/L), Aliero Quarters (90.43 particles/L), Kalgo Market (88.00 particles/L), and Malali (86.40 particles/L). The most dominant shape was fibers (73 %), followed by fragments (16 %), foams (6 %), and filaments (5 %). Polyethylene and polyamide, in that order, were the most dominant polymers, while polystyrene was the least common. The majority of risk scores were classified as III. It can be inferred from the results that microplastic pollution in borehole water poses a health hazard in the city. Consumers of borehole water in the studied areas are advised to treat the water before consumption to mitigate potential health risks.
ISSN:2671-9525
2671-9525
DOI:10.5620/eaht.2024017