Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF

Abstract Aims Heart failure with preserved ejection fraction (HFpEF) causes substantial morbidity and mortality. Importantly, atrial remodelling and atrial fibrillation are frequently observed in HFpEF. Sodium–glucose cotransporter 2 inhibitors (SGLT2i) have recently been shown to improve clinical o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2024-07, Vol.120 (9), p.999-1010
Hauptverfasser: Trum, Maximilian, Riechel, Johannes, Schollmeier, Elisa, Lebek, Simon, Hegner, Philipp, Reuthner, Kathrin, Heers, Silvia, Keller, Karoline, Wester, Michael, Klatt, Susanne, Hamdani, Nazha, Provaznik, Zdenek, Schmid, Christof, Maier, Lars, Arzt, Michael, Wagner, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Aims Heart failure with preserved ejection fraction (HFpEF) causes substantial morbidity and mortality. Importantly, atrial remodelling and atrial fibrillation are frequently observed in HFpEF. Sodium–glucose cotransporter 2 inhibitors (SGLT2i) have recently been shown to improve clinical outcomes in HFpEF, and post-hoc analyses suggest atrial anti-arrhythmic effects. We tested if isolated human atrial cardiomyocytes from patients with HFpEF exhibit an increased Na influx, which is known to cause atrial arrhythmias, and if that is responsive to treatment with the SGTL2i empagliflozin. Methods and results Cardiomyocytes were isolated from atrial biopsies of 124 patients (82 with HFpEF) undergoing elective cardiac surgery. Na influx was measured with the Na-dye Asante Natrium Green–2 AM (ANG-2). Compared to patients without heart failure (NF), Na influx was doubled in HFpEF patients (NF vs. HFpEF: 0.21 ± 0.02 vs. 0.38 ± 0.04 mmol/L/min (N = 7 vs. 18); P = 0.0078). Moreover, late INa (measured via whole-cell patch clamp) was significantly increased in HFpEF compared to NF. Western blot and HDAC4 pulldown assay indicated a significant increase in CaMKII expression, CaMKII autophosphorylation, CaMKII activity, and CaMKII-dependent NaV1.5 phosphorylation in HFpEF compared to NF, whereas NaV1.5 protein and mRNA abundance remained unchanged. Consistently, increased Na influx was significantly reduced by treatment not only with the CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP), late INa inhibitor tetrodotoxin (TTX) but also with sodium/hydrogen exchanger 1 (NHE1) inhibitor cariporide. Importantly, empagliflozin abolished both increased Na influx and late INa in HFpEF. Multivariate linear regression analysis, adjusting for important clinical confounders, revealed HFpEF to be an independent predictor for changes in Na handling in atrial cardiomyocytes. Conclusion We show for the first time increased Na influx in human atrial cardiomyocytes from HFpEF patients, partly due to increased late INa and enhanced NHE1-mediated Na influx. Empagliflozin inhibits Na influx and late INa, which could contribute to anti-arrhythmic effects in patients with HFpEF. Graphical Abstract Graphical abstract
ISSN:0008-6363
1755-3245
1755-3245
DOI:10.1093/cvr/cvae095