Enhanced Quantitative Wavefront Imaging for Nano-Object Characterization

Quantitative phase imaging enables precise and label-free characterizations of individual nano-objects within a large volume, without a priori knowledge of the sample or imaging system. While emerging common path implementations are simple enough to promise a broad dissemination, their phase sensiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-07, Vol.18 (29), p.19247-19256
Hauptverfasser: Gentner, Clémence, Rogez, Benoit, Robert, Hadrien M. L., Aggoun, Anis, Tessier, Gilles, Bon, Pierre, Berto, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative phase imaging enables precise and label-free characterizations of individual nano-objects within a large volume, without a priori knowledge of the sample or imaging system. While emerging common path implementations are simple enough to promise a broad dissemination, their phase sensitivity still falls short of precisely estimating the mass or polarizability of vesicles, viruses, or nanoparticles in single-shot acquisitions. In this paper, we revisit the Zernike filtering concept, originally crafted for intensity-only detectors, with the aim of adapting it to wavefront imaging. We demonstrate, through numerical simulation and experiments based on high-resolution wavefront sensing, that a simple Fourier-plane add-on can significantly enhance phase sensitivity for subdiffraction objectsachieving over an order of magnitude increase (×12)while allowing the quantitative retrieval of both intensity and phase. This advancement allows for more precise nano-object detection and metrology.
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c05152