Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks

Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein–ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-07, Vol.64 (14), p.5439-5450
Hauptverfasser: Gale-Day, Zachary J., Shub, Laura, Chuang, Kangway V., Keiser, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein–ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that constructs ligand–receptor graphs based on atom proximity and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks. We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score prediction tasks. Graph networks generalize better than fingerprint-based models and perform strongly for the docking score prediction task. Overall, MPNNs with proximity graph data structures augment the prediction of ligand–receptor complex properties when ligand–receptor data are available.
ISSN:1549-9596
1549-960X
1549-960X
DOI:10.1021/acs.jcim.4c00311