Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks
Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein–ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that construc...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-07, Vol.64 (14), p.5439-5450 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein–ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that constructs ligand–receptor graphs based on atom proximity and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks. We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score prediction tasks. Graph networks generalize better than fingerprint-based models and perform strongly for the docking score prediction task. Overall, MPNNs with proximity graph data structures augment the prediction of ligand–receptor complex properties when ligand–receptor data are available. |
---|---|
ISSN: | 1549-9596 1549-960X 1549-960X |
DOI: | 10.1021/acs.jcim.4c00311 |