Aerial Wildlife Image Repository for animal monitoring with drones in the age of artificial intelligence

Drones (unoccupied aircraft systems) have become effective tools for wildlife monitoring and conservation. Automated animal detection and classification using artificial intelligence (AI) can substantially reduce logistical and financial costs and improve drone surveys. However, the lack of annotate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Database : the journal of biological databases and curation 2024-07, Vol.2024
Hauptverfasser: Samiappan, Sathishkumar, Krishnan, B Santhana, Dehart, Damion, Jones, Landon R, Elmore, Jared A, Evans, Kristine O, Iglay, Raymond B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drones (unoccupied aircraft systems) have become effective tools for wildlife monitoring and conservation. Automated animal detection and classification using artificial intelligence (AI) can substantially reduce logistical and financial costs and improve drone surveys. However, the lack of annotated animal imagery for training AI is a critical bottleneck in achieving accurate performance of AI algorithms compared to other fields. To bridge this gap for drone imagery and help advance and standardize automated animal classification, we have created the Aerial Wildlife Image Repository (AWIR), which is a dynamic, interactive database with annotated images captured from drone platforms using visible and thermal cameras. The AWIR provides the first open-access repository for users to upload, annotate, and curate images of animals acquired from drones. The AWIR also provides annotated imagery and benchmark datasets that users can download to train AI algorithms to automatically detect and classify animals, and compare algorithm performance. The AWIR contains 6587 animal objects in 1325 visible and thermal drone images of predominantly large birds and mammals of 13 species in open areas of North America. As contributors increase the taxonomic and geographic diversity of available images, the AWIR will open future avenues for AI research to improve animal surveys using drones for conservation applications. Database URL: https://projectportal.gri.msstate.edu/awir/.
ISSN:1758-0463
1758-0463
DOI:10.1093/database/baae070