Molecular analysis of archival diagnostic prostate cancer biopsies identifies genomic similarities in cases with progression post‐radiotherapy, and those with de novo metastatic disease

Background It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin‐fixed paraffin‐embedded (FFPE) prostate biopsies from cohorts with post‐radiotherapy (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Prostate 2024-07, Vol.84 (10), p.977-990
Hauptverfasser: Charlton, Philip Vincent, O'Reilly, Dawn, Philippou, Yiannis, Rao, Srinivasa Rao, Lamb, Alastair David Gordon, Mills, Ian Geoffrey, Higgins, Geoff Stuart, Hamdy, Freddie Charles, Verrill, Clare, Buffa, Francesca Meteora, Bryant, Richard John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin‐fixed paraffin‐embedded (FFPE) prostate biopsies from cohorts with post‐radiotherapy (RT) long‐term clinical follow‐up has been limited. Utilizing parallel sequencing modalities, we performed a proof‐of‐principle sequencing analysis of historical diagnostic FFPE prostate biopsies. We compared patients with (i) stable PCa (sPCa) postprimary or salvage RT, (ii) progressing PCa (pPCa) post‐RT, and (iii) de novo metastatic PCa (mPCa). Methods A cohort of 19 patients with diagnostic prostate biopsies (n = 6 sPCa, n = 5 pPCa, n = 8 mPCa) and mean 4 years 10 months follow‐up (diagnosed 2009–2016) underwent nucleic acid extraction from demarcated malignancy. Samples underwent 3′RNA sequencing (3′RNAseq) (n = 19), nanoString analysis (n = 12), and Illumina 850k methylation (n = 8) sequencing. Bioinformatic analysis was performed to coherently identify differentially expressed genes and methylated genomic regions (MGRs). Results Eighteen of 19 samples provided useable 3′RNAseq data. Principal component analysis (PCA) demonstrated similar expression profiles between pPCa and mPCa cases, versus sPCa. Coherently differentially methylated probes between these groups identified ~600 differentially MGRs. The top 50 genes with increased expression in pPCa patients were associated with reduced progression‐free survival post‐RT (p 
ISSN:0270-4137
1097-0045
1097-0045
DOI:10.1002/pros.24715