Gapless genome assembly and epigenetic profiles reveal gene regulation of whole-genome triplication in lettuce

Abstract Background Lettuce, an important member of the Asteraceae family, is a globally cultivated cash vegetable crop. With a highly complex genome (∼2.5 Gb; 2n = 18) rich in repeat sequences, current lettuce reference genomes exhibit thousands of gaps, impeding a comprehensive understanding of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2024-01, Vol.13
Hauptverfasser: Cao, Shuai, Sawettalake, Nunchanoke, Shen, Lisha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Lettuce, an important member of the Asteraceae family, is a globally cultivated cash vegetable crop. With a highly complex genome (∼2.5 Gb; 2n = 18) rich in repeat sequences, current lettuce reference genomes exhibit thousands of gaps, impeding a comprehensive understanding of the lettuce genome. Findings Here, we present a near-complete gapless reference genome for cutting lettuce with high transformability, using long-read PacBio HiFi and Nanopore sequencing data. In comparison to stem lettuce genome, we identify 127,681 structural variations (SVs, present in 0.41 Gb of sequence), reflecting the divergence of leafy and stem lettuce. Interestingly, these SVs are related to transposons and DNA methylation states. Furthermore, we identify 4,612 whole-genome triplication genes exhibiting high expression levels associated with low DNA methylation levels and high N6-methyladenosine RNA modifications. DNA methylation changes are also associated with activation of genes involved in callus formation. Conclusions Our gapless lettuce genome assembly, an unprecedented achievement in the Asteraceae family, establishes a solid foundation for functional genomics, epigenomics, and crop breeding and sheds new light on understanding the complexity of gene regulation associated with the dynamics of DNA and RNA epigenetics in genome evolution.
ISSN:2047-217X
2047-217X
DOI:10.1093/gigascience/giae043