Electronic Transport Modulation in Ultrastrained Silicon Nanowire Devices
In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor–liquid–solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon di...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-06, Vol.16 (26), p.33789-33795 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor–liquid–solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c05477 |