Probing the cw-Laser-Induced Fluorescence Enhancement in CsPbBr3 Nanocrystal Thin Films: An Interplay between Photo and Thermal Activation

Perovskite nanocrystals hold significant promise for a wide range of applications, including solar cells, LEDs, photocatalysts, humidity and temperature sensors, memory devices, and low-cost photodetectors. Such technological potential stems from their exceptional quantum efficiency and charge carri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-07, Vol.16 (26), p.34303-34312
Hauptverfasser: de Souza, Gabriel Fabrício, Magalhães, Letícia Ferreira, de Souza Carvalho, Thaís Adriany, Ferreira, Diego Lourençoni, Pereira, Richard Silveira, da Cunha, Thiago Rodrigues, Bettini, Jefferson, Schiavon, Marco Antônio, Vivas, Marcelo Gonçalves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskite nanocrystals hold significant promise for a wide range of applications, including solar cells, LEDs, photocatalysts, humidity and temperature sensors, memory devices, and low-cost photodetectors. Such technological potential stems from their exceptional quantum efficiency and charge carrier conduction capability. Nevertheless, the underlying mechanisms of photoexcitation, such as phase segregation, annealing, and ionic diffusion, remain insufficiently understood. In this context, we harnessed hyperspectral fluorescence microspectroscopy to advance our comprehension of fluorescence enhancement triggered by UV continuous-wave (cw) laser irradiation of CsPbBr3 colloidal nanocrystal thin films. Initially, we explored the kinetics of fluorescence enhancement and observed that its efficiency (φph) correlates with the laser power (P), following the relationship φph = 7.7⟨P⟩0.47±0.02. Subsequently, we estimated the local temperature induced by the laser, utilizing the finite-difference method framework, and calculated the activation energy (E a) required for fluorescence enhancement to occur. Our findings revealed a very low activation energy, E a ∼ 9 kJ/mol. Moreover, we mapped the fluorescence photoenhancement by spatial scanning and real-time static mode to determine its microscale length. Below a laser power of 60 μW, the photothermal diffusion length exhibited nearly constant values of approximately (22 ± 5) μm, while a significant increase was observed at higher laser power levels. These results were ascribed to the formation of nanocrystal superclusters within the film, which involves the interparticle spacing reduction, creating the so-called quantum dot solid configuration along with laser-induced annealing for higher laser powers.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c03934