Decoding functional proteome information in model organisms using protein language models
Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected mode...
Gespeichert in:
Veröffentlicht in: | NAR genomics and bioinformatics 2024-09, Vol.6 (3), p.lqae078 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | lqae078 |
container_title | NAR genomics and bioinformatics |
container_volume | 6 |
creator | Barrios-Núñez, Israel Martínez-Redondo, Gemma I Medina-Burgos, Patricia Cases, Ildefonso Fernández, Rosa Rojas, Ana M |
description | Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use.
Graphical Abstract
Graphical Abstract |
doi_str_mv | 10.1093/nargab/lqae078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nargab/lqae078</oup_id><sourcerecordid>3075703665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c6e13819c754ee0c44a5935a770d717cbea0234d46f83be860ef7d8e2cef43763</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EolXpyogywpDWjr-SCaHyKVVigYHJcp1LCErs1k6Q-PekpFRlYrrT3XPv3elF6JzgGcEZnVvtS72a1xsNWKZHaJwISuIsEenxQT5C0xA-MMYJZ5xhcopGNM1EknA-Rm-3YFxe2TIqOmvaylldR2vvWnANRJUtnG_0ttznUeNyqCPXL7VVaELUhe3gD913a23LTpcwYOEMnRS6DjDdxQl6vb97WTzGy-eHp8XNMjY0xW1sBBCaksxIzgCwYUzzjHItJc4lkWYFGieU5UwUKV1BKjAUMk8hMVAwKgWdoOtBd92tGsgN2NbrWq191Wj_pZyu1N-Ord5V6T4VIQmRQrJe4XKn4N2mg9CqpgoG6v4hcF1QFEsuMRWC9-hsQI13IXgo9nsIVltP1OCJ2nnSD1wcXrfHfx3ogasBcN36P7FvvOma-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075703665</pqid></control><display><type>article</type><title>Decoding functional proteome information in model organisms using protein language models</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Barrios-Núñez, Israel ; Martínez-Redondo, Gemma I ; Medina-Burgos, Patricia ; Cases, Ildefonso ; Fernández, Rosa ; Rojas, Ana M</creator><creatorcontrib>Barrios-Núñez, Israel ; Martínez-Redondo, Gemma I ; Medina-Burgos, Patricia ; Cases, Ildefonso ; Fernández, Rosa ; Rojas, Ana M</creatorcontrib><description>Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use.
Graphical Abstract
Graphical Abstract</description><identifier>ISSN: 2631-9268</identifier><identifier>EISSN: 2631-9268</identifier><identifier>DOI: 10.1093/nargab/lqae078</identifier><identifier>PMID: 38962255</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Editor's Choice</subject><ispartof>NAR genomics and bioinformatics, 2024-09, Vol.6 (3), p.lqae078</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-c6e13819c754ee0c44a5935a770d717cbea0234d46f83be860ef7d8e2cef43763</cites><orcidid>0000-0003-0750-9099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38962255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barrios-Núñez, Israel</creatorcontrib><creatorcontrib>Martínez-Redondo, Gemma I</creatorcontrib><creatorcontrib>Medina-Burgos, Patricia</creatorcontrib><creatorcontrib>Cases, Ildefonso</creatorcontrib><creatorcontrib>Fernández, Rosa</creatorcontrib><creatorcontrib>Rojas, Ana M</creatorcontrib><title>Decoding functional proteome information in model organisms using protein language models</title><title>NAR genomics and bioinformatics</title><addtitle>NAR Genom Bioinform</addtitle><description>Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use.
Graphical Abstract
Graphical Abstract</description><subject>Editor's Choice</subject><issn>2631-9268</issn><issn>2631-9268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkT1PwzAQhi0EolXpyogywpDWjr-SCaHyKVVigYHJcp1LCErs1k6Q-PekpFRlYrrT3XPv3elF6JzgGcEZnVvtS72a1xsNWKZHaJwISuIsEenxQT5C0xA-MMYJZ5xhcopGNM1EknA-Rm-3YFxe2TIqOmvaylldR2vvWnANRJUtnG_0ttznUeNyqCPXL7VVaELUhe3gD913a23LTpcwYOEMnRS6DjDdxQl6vb97WTzGy-eHp8XNMjY0xW1sBBCaksxIzgCwYUzzjHItJc4lkWYFGieU5UwUKV1BKjAUMk8hMVAwKgWdoOtBd92tGsgN2NbrWq191Wj_pZyu1N-Ord5V6T4VIQmRQrJe4XKn4N2mg9CqpgoG6v4hcF1QFEsuMRWC9-hsQI13IXgo9nsIVltP1OCJ2nnSD1wcXrfHfx3ogasBcN36P7FvvOma-w</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Barrios-Núñez, Israel</creator><creator>Martínez-Redondo, Gemma I</creator><creator>Medina-Burgos, Patricia</creator><creator>Cases, Ildefonso</creator><creator>Fernández, Rosa</creator><creator>Rojas, Ana M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0750-9099</orcidid></search><sort><creationdate>20240901</creationdate><title>Decoding functional proteome information in model organisms using protein language models</title><author>Barrios-Núñez, Israel ; Martínez-Redondo, Gemma I ; Medina-Burgos, Patricia ; Cases, Ildefonso ; Fernández, Rosa ; Rojas, Ana M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c6e13819c754ee0c44a5935a770d717cbea0234d46f83be860ef7d8e2cef43763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Editor's Choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barrios-Núñez, Israel</creatorcontrib><creatorcontrib>Martínez-Redondo, Gemma I</creatorcontrib><creatorcontrib>Medina-Burgos, Patricia</creatorcontrib><creatorcontrib>Cases, Ildefonso</creatorcontrib><creatorcontrib>Fernández, Rosa</creatorcontrib><creatorcontrib>Rojas, Ana M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR genomics and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrios-Núñez, Israel</au><au>Martínez-Redondo, Gemma I</au><au>Medina-Burgos, Patricia</au><au>Cases, Ildefonso</au><au>Fernández, Rosa</au><au>Rojas, Ana M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding functional proteome information in model organisms using protein language models</atitle><jtitle>NAR genomics and bioinformatics</jtitle><addtitle>NAR Genom Bioinform</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>6</volume><issue>3</issue><spage>lqae078</spage><pages>lqae078-</pages><issn>2631-9268</issn><eissn>2631-9268</eissn><abstract>Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use.
Graphical Abstract
Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38962255</pmid><doi>10.1093/nargab/lqae078</doi><orcidid>https://orcid.org/0000-0003-0750-9099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2631-9268 |
ispartof | NAR genomics and bioinformatics, 2024-09, Vol.6 (3), p.lqae078 |
issn | 2631-9268 2631-9268 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217674 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Editor's Choice |
title | Decoding functional proteome information in model organisms using protein language models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20functional%20proteome%20information%20in%20model%20organisms%20using%20protein%20language%20models&rft.jtitle=NAR%20genomics%20and%20bioinformatics&rft.au=Barrios-N%C3%BA%C3%B1ez,%20Israel&rft.date=2024-09-01&rft.volume=6&rft.issue=3&rft.spage=lqae078&rft.pages=lqae078-&rft.issn=2631-9268&rft.eissn=2631-9268&rft_id=info:doi/10.1093/nargab/lqae078&rft_dat=%3Cproquest_pubme%3E3075703665%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075703665&rft_id=info:pmid/38962255&rft_oup_id=10.1093/nargab/lqae078&rfr_iscdi=true |