Decoding functional proteome information in model organisms using protein language models

Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAR genomics and bioinformatics 2024-09, Vol.6 (3), p.lqae078
Hauptverfasser: Barrios-Núñez, Israel, Martínez-Redondo, Gemma I, Medina-Burgos, Patricia, Cases, Ildefonso, Fernández, Rosa, Rojas, Ana M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use. Graphical Abstract Graphical Abstract
ISSN:2631-9268
2631-9268
DOI:10.1093/nargab/lqae078