Subcutaneous closure versus no subcutaneous closure after non‐caesarean surgical procedures
Background Most surgical procedures involve a cut in the skin that allows the surgeon to gain access to the surgical site. Most surgical wounds are closed fully at the end of the procedure, and this review focuses on these. The human body has multiple layers of tissues, and the skin is the outermost...
Gespeichert in:
Veröffentlicht in: | Cochrane database of systematic reviews 2014-01, Vol.2014 (1), p.CD010425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Most surgical procedures involve a cut in the skin that allows the surgeon to gain access to the surgical site. Most surgical wounds are closed fully at the end of the procedure, and this review focuses on these. The human body has multiple layers of tissues, and the skin is the outermost of these layers. The loose connective tissue just beneath the skin is called subcutaneous tissue, and this generally contains fat. There is uncertainty about closure of subcutaneous tissue after surgery: some surgeons advocate closure of subcutaneous tissue, as they consider this closes dead space and leads to a decrease in wound complications; others consider closure of subcutaneous tissue to be an unnecessary step that increases operating time and involves the use of additional suture material without offering any benefit.
Objectives
To compare the benefits (such as decreased wound‐related complications) and consequences (such as increased operating time) of subcutaneous closure compared with no subcutaneous closure in participants undergoing non‐caesarean surgical procedures.
Search methods
In August 2013 we searched the following databases: Cochrane Wounds Group Specialised Register (searched 29 August, 2013); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7); Ovid MEDLINE (1946 to August Week 3 2013); Ovid MEDLINE (In‐Process & Other Non‐Indexed Citations August 28, 2013); Ovid EMBASE (1974 to 2013 Week 34); and EBSCO CINAHL (1982 to 23 August 2013). We did not restrict studies with respect to language, date of publication or study setting.
Selection criteria
We included only randomised controlled trials (RCTs) comparing subcutaneous closure with no subcutaneous closure irrespective of the nature of the suture material(s) or whether continuous or interrupted sutures were used. We included all RCTs in the analysis, regardless of language, publication status, publication year, or sample size.
Data collection and analysis
Two review authors independently identified the trials and extracted data. We calculated the risk ratio (RR) with 95% confidence intervals (CI) for comparing binary (dichotomous) outcomes between the groups and calculated the mean difference (MD) with 95% CI for continuous outcomes. We performed meta‐analysis using the fixed‐effect model and random‐effects model. We performed intention‐to‐treat analysis whenever possible.
Main results
Eight RCTs met the inclusion criteria. Six of the trials pro |
---|---|
ISSN: | 1465-1858 1469-493X 1465-1858 1469-493X |
DOI: | 10.1002/14651858.CD010425.pub2 |