Need for cross-level iterative re-entry in models of visual processing

Two main hypotheses regarding the directional flow of visual information processing in the brain have been proposed: feed-forward (bottom-up) and re-entrant (top-down). Early theories espoused feed-forward principles in which processing was said to advance from simple to increasingly complex attribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychonomic bulletin & review 2024-06, Vol.31 (3), p.979-984
Hauptverfasser: Spalek, Thomas M., Unnikrishnan, K. P., Di Lollo, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two main hypotheses regarding the directional flow of visual information processing in the brain have been proposed: feed-forward (bottom-up) and re-entrant (top-down). Early theories espoused feed-forward principles in which processing was said to advance from simple to increasingly complex attributes terminating at a higher area where conscious perceptions occur. That view is disconfirmed by advances in neuroanatomy and neurophysiology, which implicate re-entrant two-way signaling as the predominant form of communication between brain regions. With some notable exceptions, the notion of re-entrant processing has had a relatively modest effect on computational models of perception and cognition, which continue to be predominantly based on feed-forward or within-level re-entrant principles. In the present work we describe five sets of empirical findings that defy interpretation in terms of feed-forward or within-level re-entrant principles. We conclude by urging the adoption of psychophysical, biological, and computational models based on cross-level iterative re-entrant principles.
ISSN:1069-9384
1531-5320
1531-5320
DOI:10.3758/s13423-023-02396-x