Development of a trash classification system to map potential Aedes aegypti breeding grounds using unmanned aerial vehicle imaging

Aedes aegypti mosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small containers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial imaging to map and classify potential Ae. aegypti bree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-06, Vol.31 (28), p.41107-41117
Hauptverfasser: Rosser, Joelle I., Tarpenning, Morgan S., Bramante, Juliet T., Tamhane, Anoushka, Chamberlin, Andrew J., Mutuku, Paul S., De Leo, Giulio A., Ndenga, Bryson, Mutuku, Francis, LaBeaud, Angelle Desiree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aedes aegypti mosquitos are the primary vector for dengue, chikungunya, and Zika viruses and tend to breed in small containers of water, with a propensity to breed in small piles of trash and abandoned tires. This study piloted the use of aerial imaging to map and classify potential Ae. aegypti breeding sites with a specific focus on trash, including discarded tires. Aerial images of coastal and inland sites in Kenya were obtained using an unmanned aerial vehicle. Aerial images were reviewed for identification of trash and suspected trash mimics, followed by extensive community walk-throughs to identify trash types and mimics by description and ground photography. An expert panel reviewed aerial images and ground photos to develop a classification scheme and evaluate the advantages and disadvantages of aerial imaging versus walk-through trash mapping. A trash classification scheme was created based on trash density, surface area, potential for frequent disturbance, and overall likelihood of being a productive Ae. aegypti breeding site. Aerial imaging offers a novel strategy to characterize, map, and quantify trash at risk of promoting Ae. aegypti proliferation, generating opportunities for further research on trash associations with disease and trash interventions.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-33801-0