Multiomic analyses uncover immunological signatures in acute and chronic coronary syndromes

Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2024-06, Vol.30 (6), p.1696-1710
Hauptverfasser: Pekayvaz, Kami, Losert, Corinna, Knottenberg, Viktoria, Gold, Christoph, van Blokland, Irene V., Oelen, Roy, Groot, Hilde E., Benjamins, Jan Walter, Brambs, Sophia, Kaiser, Rainer, Gottschlich, Adrian, Hoffmann, Gordon Victor, Eivers, Luke, Martinez-Navarro, Alejandro, Bruns, Nils, Stiller, Susanne, Akgöl, Sezer, Yue, Keyang, Polewka, Vivien, Escaig, Raphael, Joppich, Markus, Janjic, Aleksandar, Popp, Oliver, Kobold, Sebastian, Petzold, Tobias, Zimmer, Ralf, Enard, Wolfgang, Saar, Kathrin, Mertins, Philipp, Huebner, Norbert, van der Harst, Pim, Franke, Lude H., van der Wijst, Monique G. P., Massberg, Steffen, Heinig, Matthias, Nicolai, Leo, Stark, Konstantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS ( n  = 62 patients in total, n  = 15 women and n  = 47 men) and validate this in an external cohort ( n  = 55 patients in total, n  = 11 women and n  = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies. Multiomic factor analysis of blood multiomic data, including single-cell transcriptomics, for individuals with either acute or chronic coronary syndrome identifies immune cell signatures that correlate with treatment outcomes.
ISSN:1078-8956
1546-170X
1546-170X
DOI:10.1038/s41591-024-02953-4