scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics
We present a statistical simulator, scDesign3, to generate realistic single-cell and spatial omics data, including various cell states, experimental designs and feature modalities, by learning interpretable parameters from real data. Using a unified probabilistic model for single-cell and spatial om...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2024-02, Vol.42 (2), p.247-252 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a statistical simulator, scDesign3, to generate realistic single-cell and spatial omics data, including various cell states, experimental designs and feature modalities, by learning interpretable parameters from real data. Using a unified probabilistic model for single-cell and spatial omics data, scDesign3 infers biologically meaningful parameters; assesses the goodness-of-fit of inferred cell clusters, trajectories and spatial locations; and generates in silico negative and positive controls for benchmarking computational tools.
The challenge of simulating multiomic single-cell data is addressed by a probabilistic model. |
---|---|
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-023-01772-1 |