Inherited Structure Properties of Larch Arabinogalactan Affected via the TEMPO/NaBr/NaOCl Oxidative System

Arabinogalactan (AG), extracted from larch wood, is a β-1,3-galactan backbone and β-1,6-galactan side chains with attached α-1-arabinofuranosyl and β-1-arabinopyranosyl residues. Although the structural characteristics of arabinogalactan II type have already been studied, its functionalization using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-05, Vol.16 (11), p.1458
Hauptverfasser: Ionin, Vladislav A, Malyar, Yuriy N, Borovkova, Valentina S, Zimonin, Dmitriy V, Gulieva, Roksana M, Fetisova, Olga Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arabinogalactan (AG), extracted from larch wood, is a β-1,3-galactan backbone and β-1,6-galactan side chains with attached α-1-arabinofuranosyl and β-1-arabinopyranosyl residues. Although the structural characteristics of arabinogalactan II type have already been studied, its functionalization using 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation remains a promising avenue. In this study, the oxidation of AG, a neutral polysaccharide, was carried out using the TEMPO/NaBr/NaOCl system, resulting in polyuronides with improved functional properties. The oxidation of AG was controlled by analyzing portions of the reaction mixture using spectrophotometric and titration methods. To determine the effect of the TEMPO/NaBr/NaOCl system, air-dried samples of native and oxidized AG were studied by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, as well as by gel permeation chromatography. Compounds that model free (1,1-diphenyl-2-picrylhydrazyl (DPPH)) and hydroxyl radicals (iron(II) sulfate, hydrogen peroxide, and salicylic acid) were used to study the antioxidant properties. It was found that, in oxidized forms of AG, the content of carboxyl groups increases by 0.61 mmol compared to native AG. The transformation of oxidized AG into the H form using a strong acid cation exchanger leads to an increase in the number of active carboxyl groups to 0.76 mmol. Using FTIR spectroscopy, characteristic absorption bands (1742, 1639, and 1403 cm ) were established, indicating the occurrence of oxidative processes with a subsequent reduction in the carboxyl group. The functionality of AG was also confirmed by gel permeation chromatography (GPC), which is reflected in an increase in molecular weights (up to 15,700 g/mol). A study of the antioxidant properties of the oxidized and protonated forms of AG show that the obtained antioxidant activity (AOA) values are generally characteristic of polyuronic acids. Therefore, the TEMPO oxidation of AG and other neutral polysaccharides can be considered a promising approach for obtaining compounds with the necessary controlled characteristics.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16111458