Mo-Doped Na4Fe3(PO4)2P2O7/C Composites for High-Rate and Long-Life Sodium-Ion Batteries
Na4Fe3(PO4)2P2O7/C (NFPP) is a promising cathode material for sodium-ion batteries, but its electrochemical performance is heavily impeded by its low electronic conductivity. To address this, pure-phase Mo6+-doped Na4Fe3−xMox(PO4)2P2O7/C (Mox-NFPP, x = 0, 0.05, 0.10, 0.15) with the Pn21a space group...
Gespeichert in:
Veröffentlicht in: | Materials 2024-06, Vol.17 (11), p.2679 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Na4Fe3(PO4)2P2O7/C (NFPP) is a promising cathode material for sodium-ion batteries, but its electrochemical performance is heavily impeded by its low electronic conductivity. To address this, pure-phase Mo6+-doped Na4Fe3−xMox(PO4)2P2O7/C (Mox-NFPP, x = 0, 0.05, 0.10, 0.15) with the Pn21a space group is successfully synthesized through spray drying and annealing methods. Density functional theory (DFT) calculations reveal that Mo6+ doping facilitates the transition of electrons from the valence to the conduction band, thus enhancing the intrinsic electron conductivity of Mox-NFPP. With an optimal Mo6+ doping level of x = 0.10, Mo0.10-NFPP exhibits lower charge transfer resistance, higher sodium-ion diffusion coefficients, and superior rate performance. As a result, the Mo0.10-NFPP cathode offers an initial discharge capacity of up to 123.9 mAh g−1 at 0.1 C, nearly reaching its theoretical capacity. Even at a high rate of 10 C, it delivers a high discharge capacity of 86.09 mAh g−1, maintaining 96.18% of its capacity after 500 cycles. This research presents a new and straightforward strategy to enhance the electrochemical performance of NFPP cathode materials for sodium-ion batteries. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17112679 |