Durability of Prestressed Piles in a Leachate Environment

Prestressed pipe piles are common concrete components characterized by dense concrete structures and favorable mechanical properties, and thus, extensively used as coastal soft soil foundations. However, their durability in harsh environments has not been fully clarified. In this study, leachate fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-05, Vol.17 (11), p.2497
Hauptverfasser: Wang, Yu, Deng, Min, Zhang, Rihong, Yu, Xuming, Xue, Junzhong, Zhang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prestressed pipe piles are common concrete components characterized by dense concrete structures and favorable mechanical properties, and thus, extensively used as coastal soft soil foundations. However, their durability in harsh environments has not been fully clarified. In this study, leachate from an actual landfill site was collected from the east coast of China as the corrosive medium, and the corrosion process was accelerated by electrifying prestressed pipe piles. The results demonstrated that the concentration of chloride ions in the concrete of the prestressed pile increased with the increase in corrosion time. Moreover, the experimental corrosion of these prestressed piles in the drying-wetting cycle proved to be the most severe. However, a protective layer of epoxy resin coating can effectively inhibit the diffusion of chloride ions into the interior of the piles. The final theoretical corrosion amounts of the piles were 1.55 kg, 1.20 kg, and 1.64 kg under immersion, epoxy resin protection, and a drying-wetting cycle environment. The application of epoxy resin reduced chloride penetration by 22.6%, and the drying-wetting cycle increased chloride penetration by 5.8%, respectively, with corresponding corrosion potentials following similar patterns. The actual corrosion depth of the welding seam was 3.20 mm, and there was a large corrosion allowance compared with the requirement (6.53 mm) for the ultimate bending moment. In summary, these prestressed piles exhibited good durability in a leachate environment.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17112497