Upregulation of iNOS/NO in Cancer Cells That Survive a Photodynamic Challenge: Role of No in Accelerated Cell Migration and Invasion

Anti-tumor photodynamic therapy (PDT) is a unique modality that employs a photosensitizer (PS), PS-exciting light, and O to generate cytotoxic oxidants. For various reasons, not all malignant cells in any given tumor will succumb to a PDT challenge. Previous studies by the authors revealed that nitr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-06, Vol.25 (11), p.5697
Hauptverfasser: Girotti, Albert W, Korytowski, Witold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anti-tumor photodynamic therapy (PDT) is a unique modality that employs a photosensitizer (PS), PS-exciting light, and O to generate cytotoxic oxidants. For various reasons, not all malignant cells in any given tumor will succumb to a PDT challenge. Previous studies by the authors revealed that nitric oxide (NO) from inducible NO synthase (iNOS/NOS2) plays a key role in tumor cell resistance and also stimulation of migratory/invasive aggressiveness of surviving cells. iNOS was the only NOS isoform implicated in these effects. Significantly, NO from stress-upregulated iNOS was much more important in this regard than NO from preexisting enzymes. Greater NO-dependent resistance, migration, and invasion was observed with at least three different cancer cell lines, and this was attenuated by iNOS activity inhibitors, NO scavengers, or an iNOS transcriptional inhibitor. NO diffusing from PDT-targeted cells also stimulated migration/invasion potency of non-targeted bystander cells. Unless counteracted by appropriate measures, all these effects could seriously compromise clinical PDT efficacy. Here, we will review specific examples of these negative side effects of PDT and how they might be suppressed by adjuvants such as NO scavengers or inhibitors of iNOS activity or expression.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25115697