Universally Quantitative Band-Selective Pure Shift NMR Spectroscopy
NMR spectroscopy is often described as a quantitative analytical technique. Strictly, only the simple pulse-acquire experiment is universally quantitative, but the poor signal resolution of the 1H NMR pulse-acquie experiment frequently complicates quantitative analysis. Pure shift NMR techniques pro...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-06, Vol.96 (23), p.9601-9609 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NMR spectroscopy is often described as a quantitative analytical technique. Strictly, only the simple pulse-acquire experiment is universally quantitative, but the poor signal resolution of the 1H NMR pulse-acquie experiment frequently complicates quantitative analysis. Pure shift NMR techniques provide higher resolution, by reducing signal overlap, but they are susceptible to a variety of sources of site-dependent signal loss. Here, we introduce a new method that corrects for signal loss from such sources in band-selective pure shift NMR experiments, by performing different numbers of iterations of the same pulse sequence elements before acquisition to allow extrapolation back to the loss-free signal. We apply this method to both interferogram and semi-realtime acquisition modes, obtaining integrals within 1% of those acquired from a pulse-acquire experiment for a three-component mixture. |
---|---|
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.4c01199 |