Electroluminescent vertical tunneling junctions based on WSe2 monolayer quantum emitter arrays: Exploring tunability with electric and magnetic fields
We experimentally demonstrate the creation of defects in monolayer WSe2 via nanopillar imprinting and helium ion irradiation. Based on the first method, we realize atomically thin vertical tunneling light-emitting diodes based on WSe2 monolayers hosting quantum emitters at deterministically specifie...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-06, Vol.121 (23), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We experimentally demonstrate the creation of defects in monolayer WSe2 via nanopillar imprinting and helium ion irradiation. Based on the first method, we realize atomically thin vertical tunneling light-emitting diodes based on WSe2 monolayers hosting quantum emitters at deterministically specified locations. We characterize these emitters by investigating the evolution of their emission spectra in external electric and magnetic fields, as well as by inducing electroluminescence at low temperatures. We identify qualitatively different types of quantum emitters and classify them according to the dominant electron–hole recombination paths, determined by the mechanisms of intervalley mixing occurring in fundamental conduction and/or valence subbands. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.2401757121 |