Clinical relevance of the homologous recombination machinery in cancer therapy

Cancer chemotherapy and radiotherapy kill cancer cells by inducing DNA damage, unless the lesions are repaired by intrinsic repair pathways. DNA double‐strand breaks (DSB) are the most deleterious type of damage caused by cancer therapy. Homologous recombination (HR) is one of the major repair pathw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2008-02, Vol.99 (2), p.187-194
1. Verfasser: Miyagawa, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer chemotherapy and radiotherapy kill cancer cells by inducing DNA damage, unless the lesions are repaired by intrinsic repair pathways. DNA double‐strand breaks (DSB) are the most deleterious type of damage caused by cancer therapy. Homologous recombination (HR) is one of the major repair pathways for DSB and is thus a potential target of cancer therapy. Cells with a defect in HR have been shown to be sensitive to a variety of DNA‐damaging agents, particularly interstrand crosslink (ICL)‐inducing agents such as mitomycin C and cisplatin. These findings have recently been applied to clinical studies of cancer therapy. ERCC1, a structure‐specific endonuclease involved in nucleotide excision repair (NER) and HR, confers resistance to cisplatin. Patients with ERCC1‐negative non‐small‐cell lung cancer were shown to benefit from adjuvant cisplatin‐based chemotherapy. Imatinib, an inhibitor of the c‐Abl kinase, has been investigated as a sensitizer in DNA‐damaging therapy, because c‐Abl activates Rad51, which plays a key role in HR. Furthermore, proteins involved in HR have been shown to repair DNA damage induced by a variety of other chemotherapeutic agents, including camptothecin and gemcitabine. These findings highlight the importance of HR machinery in cancer therapy. (Cancer Sci 2008; 99: 187–194)
ISSN:1347-9032
1349-7006
1349-7006
DOI:10.1111/j.1349-7006.2007.00644.x