Inhibition of glycolysis enhances the efficacy of immunotherapy via PDK-mediated upregulation of PD-L1

Background Immunotherapy for gastric cancer remains a challenge due to its limited efficacy. Metabolic reprogramming toward glycolysis has emerged as a promising avenue for enhancing the sensitivity of tumors to immunotherapy. Pyruvate dehydrogenase kinases (PDKs) play pivotal roles in regulating gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Immunology, Immunotherapy : CII Immunotherapy : CII, 2024-06, Vol.73 (8), p.151, Article 151
Hauptverfasser: Zhang, Ruizhi, Mao, Gan, Tang, Yu, Li, Chong, Gao, Yisong, Nie, Wenxiang, Song, Tianyu, Liu, Suao, Zhang, Peng, Tao, Kaixiong, Li, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Immunotherapy for gastric cancer remains a challenge due to its limited efficacy. Metabolic reprogramming toward glycolysis has emerged as a promising avenue for enhancing the sensitivity of tumors to immunotherapy. Pyruvate dehydrogenase kinases (PDKs) play pivotal roles in regulating glycolysis. The importance of PDKs in the context of gastric cancer immunotherapy and their potential as therapeutic targets have not been fully explored. Methods PDK and PD-L1 expression was analyzed using data from the GSE66229 and The Cancer Genome Atlas (TCGA) cohorts. Additionally, the Immune Checkpoint Blockade Therapy Atlas (ICBatlas) database was utilized to assess PDK expression in an immune checkpoint blockade (ICB) therapy group. Subsequently, the upregulation of PD-L1 and the enhancement of anticancer effects achieved by targeting PDK were validated through in vivo and in vitro assays. The impact of PDK on histone acetylation was investigated using ChIP‒qPCR to detect changes in histone acetylation levels. Results Our analysis revealed a notable negative correlation between PD-L1 and PDK expression. Downregulation of PDK led to a significant increase in PD-L1 expression. PDK inhibition increased histone acetylation levels by promoting acetyl-CoA generation. The augmentation of acetyl-CoA production and concurrent inhibition of histone deacetylation were found to upregulate PD-L1 expression in gastric cancer cells. Additionally, we observed a significant increase in the anticancer effect of PD-L1 antibodies following treatment with a PDK inhibitor. Conclusions Downregulation of PDK in gastric cancer cells leads to an increase in PD-L1 expression levels, thus potentially improving the efficacy of PD-L1 immune checkpoint blockade therapy.
ISSN:1432-0851
0340-7004
1432-0851
DOI:10.1007/s00262-024-03735-0