Magnetic Cellular Backpacks for Spatial Targeting, Imaging, and Immunotherapy

Adoptive cell transfer (ACT) therapies are growing in popularity due to their ability to interact with diseased tissues in a specific manner. Disc-shaped particles, or “backpacks”, that bind to cellular surfaces show promise for augmenting the therapeutic potential of adoptively transferred cells by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2024-08, Vol.7 (8), p.4843-4855
Hauptverfasser: Day, Nicole B., Orear, Christopher R., Velazquez-Albino, Ambar C., Good, Hayden J., Melnyk, Andrii, Rinaldi-Ramos, Carlos M., Shields IV, C. Wyatt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adoptive cell transfer (ACT) therapies are growing in popularity due to their ability to interact with diseased tissues in a specific manner. Disc-shaped particles, or “backpacks”, that bind to cellular surfaces show promise for augmenting the therapeutic potential of adoptively transferred cells by resisting phagocytosis and locally releasing drugs to maintain cellular activity over time. However, many ACTs suffer from limited tumor infiltration and retention and lack a method for real-time spatial analysis. Therefore, we have designed biodegradable backpacks loaded with superparamagnetic iron oxide nanoparticles (SPIONs) to improve upon current ACT strategies by (i) controlling the localization of cell-backpack complexes using gradient magnetic fields and (ii) enabling magnetic particle imaging (MPI) to track complexes after injection. We show that magnetic backpacks bound to macrophages and loaded with a proinflammatory drug, resiquimod, maintain anticancer phenotypes of carrier macrophages for 5 days and create cytokine “factories” that continuously release IL-12. Furthermore, we establish that forces generated by gradient magnet fields are sufficient to displace cell-backpack complexes in physiological settings. Finally, we demonstrate that MPI can be used to visualize cell-backpack complexes in mouse tumors, enabling a potential strategy to track the biodistribution of ACTs in real time.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.3c00720