Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants
The SXT element (SXT) is becoming an increasingly prevalent vector for the dissemination of antibiotic resistances in Vibrio cholerae. SXT is a member of a larger family of elements, formerly defined as IncJ plasmids, that are self-transmissible by conjugation and integrate site-specifically into th...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2002-12, Vol.59 (12), p.2065-2070 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The SXT element (SXT) is becoming an increasingly prevalent vector for the dissemination of antibiotic resistances in Vibrio cholerae. SXT is a member of a larger family of elements, formerly defined as IncJ plasmids, that are self-transmissible by conjugation and integrate site-specifically into the host chromosome. Comparison of the DNA sequences of SXT and R391, an IncJ element from Providencia rettgeri, indicate that these elements consist of a conserved backbone that mediates the regulation, excision/integration and conjugative transfer of the elements. Both elements have insertions into this backbone that either confer the element-specific properties or are of unknown function. Interestingly, the conserved SXT and R391 backbone apparently contains hotspots for insertion of additional DNA sequences. This backbone represents a scaffold for the mobilization of genetic material between a wide range of gram-negative bacteria, allowing for rapid adaptation to changing environments. |
---|---|
ISSN: | 1420-682X 1420-9071 |
DOI: | 10.1007/s000180200006 |