Profiling IOP-Responsive Genes in the Trabecular Meshwork and Optic Nerve Head in a Rat Model of Controlled Elevation of Intraocular Pressure

The rat controlled elevation of intraocular pressure (CEI) model allows study of in vivo responses to short-term exposure to defined intraocular pressures (IOP). In this study, we used NanoString technology to investigate in vivo IOP-related gene responses in the trabecular meshwork (TM) and optic n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2024-05, Vol.65 (5), p.41-41
Hauptverfasser: Lozano, Diana C, Yang, Yong-Feng, Cepurna, William O, Smoody, Barbara F, Ing, Eliesa, Morrison, John C, Keller, Kate E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rat controlled elevation of intraocular pressure (CEI) model allows study of in vivo responses to short-term exposure to defined intraocular pressures (IOP). In this study, we used NanoString technology to investigate in vivo IOP-related gene responses in the trabecular meshwork (TM) and optic nerve head (ONH) simultaneously from the same animals. Male and female rats (N = 35) were subjected to CEI for 8 hours at pressures simulating mean, daytime normotensive rat IOP (CEI-20), or 2.5× IOP (CEI-50). Naïve animals that received no anesthesia or surgical interventions served as controls. Immediately after CEI, TM and ONH tissues were dissected, RNA was isolated, and samples were analyzed with a NanoString panel containing 770 genes. Postprocessing, raw count data were uploaded to ROSALIND for differential gene expression analyses. For the TM, 45 IOP-related genes were significant in the CEI-50 versus CEI-20 and CEI-50 versus naïve comparisons, with 15 genes common to both comparisons. Bioinformatics analysis identified Notch and transforming growth factor beta (TGFβ) pathways to be the most up- and downregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. For ONH, 22 significantly differentially regulated genes were identified in the CEI-50 versus naïve comparison. Pathway analysis identified defense response and immune response as two significantly upregulated biological process pathways. This study demonstrated the ability to assay short-term IOP-responsive genes in both TM and ONH tissues simultaneously. In the TM, downregulation of TGFβ pathway genes suggests that TM responses may reduce TGFβ-induced extracellular matrix synthesis. For ONH, the initial response to short-term elevated IOP may be protective.
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.65.5.41