L-arginine regulates asymmetric dimethylarginine metabolism by inhibiting dimethylarginine dimethylaminohydrolase activity in hepatic (HepG2) cells
An increase in circulating asymmetric dimethylarginine (ADMA) and a decreased L-arginine/ADMA ratio are associated with reduced endothelial nitric oxide (NO) production and increased risk of vascular disease. We explored relations between ADMA, L-arginine and dimethylarginine dimethylaminohydrolase...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2006-12, Vol.63 (23), p.2838-2846 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An increase in circulating asymmetric dimethylarginine (ADMA) and a decreased L-arginine/ADMA ratio are associated with reduced endothelial nitric oxide (NO) production and increased risk of vascular disease. We explored relations between ADMA, L-arginine and dimethylarginine dimethylaminohydrolase (DDAH) in liver (HepG2) cells. DDAH is the principle enzyme for the metabolism of ADMA. HepG2 cells metabolised 44.8 nmol/h of ADMA per 3.6 x 10⁶ cells in the absence of L-arginine. The metabolism of ADMA at physiological (1μ mol/l, p < 0.01) and at pathological (100μmol/l, p < 0.01) levels was inhibited dose-dependently by L-arginine (0-400μmol/l) in cultured HepG2 cells and increased intracellular ADMA (p = 0.039). L-arginine competitively inhibited DDAH enzyme activity to 5.6 ± 2.0% of the untreated level (p < 0.01). We conclude that L-arginine regulates ADMA metabolism dose-dependently by competing for DDAH thus maintaining the metabolic balance of L-arginine and ADMA, and endothelial NO homeostasis. |
---|---|
ISSN: | 1420-682X 1420-9071 |
DOI: | 10.1007/s00018-006-6271-8 |