The effect of αB-crystallin and Hsp27 on the availability of translation initiation factors in heat-shocked cells

The mechanism of the translational thermotolerance provided by the small heat shock proteins (sHsps) αB-crystallin or Hsp27 is unknown. We show here that Hsp27, but not αB-crystallin, increased the pool of mobile stress granule-associated enhanced green fluorescent protein (EGFP)-eukaryotic translat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2006-03, Vol.63 (6), p.735-743
Hauptverfasser: Doerwald, L., Genesen, S. T. van, Onnekink, C., Marín-Vinader, L., Lange, F. de, Jong, W. W. de, Lubsen, N. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of the translational thermotolerance provided by the small heat shock proteins (sHsps) αB-crystallin or Hsp27 is unknown. We show here that Hsp27, but not αB-crystallin, increased the pool of mobile stress granule-associated enhanced green fluorescent protein (EGFP)-eukaryotic translation initiation factor (eIF)4E in heat-shocked cells, as determined by fluorescence recovery after photobleaching. Hsp27 also partially prevented the sharp decrease in the pool of mobile cytoplasmic EGFP-eIF4G. sHsps did not prevent the phosphorylation of eIF2α by a heat shock, but promoted dephosphorylation during recovery. Expression of the C-terminal fragment of GADD34, which causes constitutive dephosphorylation of eIF2α, fully compensated for the stimulatory effect of αB-crystallin on protein synthesis in heat-shocked cells, but only partially for that of Hsp27. Our data show that sHsps do not prevent the inhibition of protein synthesis upon heat shock, but restore translation more rapidly by promoting the dephosphorylation of eIF2α and, in the case of Hsp27, the availability of eIF4E and eIF4G.
ISSN:1420-682X
1420-9071
DOI:10.1007/s00018-005-5582-5