Peripheral preprocessing in Drosophila facilitates odor classification

The mammalian brain implements sophisticated sensory processing algorithms along multilayered ("deep") neural networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using as a model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-05, Vol.121 (21), p.e2316799121-e2316799121
Hauptverfasser: Puri, Palka, Wu, Shiuan-Tze, Su, Chih-Ying, Aljadeff, Johnatan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mammalian brain implements sophisticated sensory processing algorithms along multilayered ("deep") neural networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using as a model, we uncover the algorithmic role of odor preprocessing by a shallow network of compartmentalized olfactory receptor neurons. Each compartment operates as a ratiometric unit for specific odor-mixtures. This computation arises from a simple mechanism: electrical coupling between two differently sized neurons. We demonstrate that downstream synaptic connectivity is shaped to optimally leverage amplification of a hedonic value signal in the periphery. Furthermore, peripheral preprocessing is shown to markedly improve novel odor classification in a higher brain center. Together, our work highlights a far-reaching functional role of the sensory periphery for downstream processing. By elucidating the implementation of powerful computations by a shallow network, we provide insights into general principles of efficient sensory processing algorithms.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2316799121