Aryl-hydrocarbon receptor-dependent alteration of FAK/RhoA in the inhibition of HUVEC motility by 3-methylcholanthrene

We previously demonstrated the antiproliferative and antiangiogenic effects of 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, in human umbilical vascular endothelial cells (HUVECs). Herein, we unraveled its molecular mechanisms in inhibiting HUVEC motility. 3MC down-regulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2009-10, Vol.66 (19), p.3193-3205
Hauptverfasser: Chang, Chih-Cheng, Tsai, Shih-Ying, Lin, Heng, Li, Hsiao-Fen, Lee, Yi-Hsuan, Chou, Ying, Jen, Chih-Yu, Juan, Shu-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously demonstrated the antiproliferative and antiangiogenic effects of 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, in human umbilical vascular endothelial cells (HUVECs). Herein, we unraveled its molecular mechanisms in inhibiting HUVEC motility. 3MC down-regulated FAK, but up-regulated RhoA, which was rescued by AhR knockdown. It led us to identify novel AhR binding sites in the FAK/RhoA promoters. Additionally, 3MC increased RhoA activity via suppression of a negative feedback pathway of FAK/p190RhoGAP. With an increase in membrane-bound RhoA, subsequent stress fiber and focal adhesion complex formation was observed in 3MC-treated cells, and this was reversed by a RhoA inhibitor and AhR antagonists. Notably, these compounds significantly reversed 3MC-mediated anti-migration in a transwell assay. The in vitro findings were further confirmed using an animal model of Matrigel formation in Balb/c mice. Collectively, AhR's genomic regulation of FAK/RhoA, together with RhoA activation, is ascribable to the anti-migration effect of 3MC in HUVECs.
ISSN:1420-682X
1420-9071
DOI:10.1007/s00018-009-0102-7