Reestablishment of the inactive X chromosome to the ground state through cell fusion-induced reprogramming
The restricted gene expression pattern of a differentiated cell can be reversed by fusion of the somatic cell with a more developmentally potent cell type, such as an embryonic stem (ES) cell. During this reprogramming process, somatic cells obtain most of the characteristics of pluripotent cells. R...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2012-12, Vol.69 (23), p.4067-4077 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The restricted gene expression pattern of a differentiated cell can be reversed by fusion of the somatic cell with a more developmentally potent cell type, such as an embryonic stem (ES) cell. During this reprogramming process, somatic cells obtain most of the characteristics of pluripotent cells. Reactivation of an inactive X chromosome (Xi) is an important epigenetic marker confirming the pluripotent reprogramming of somatic cells. Female somatic cells contain one active X chromosome (Xa) and one Xi, and following the fusion of these cells with male ES cells, the Xi becomes activated, resulting in XaXaXaY fusion hybrid cells. To monitor Xi reactivation, transgenic female neural stem cells (fNSCs) carrying a green fluorescent protein (GFP) reporter gene expressed on the Xa (X-GFP), but not on the Xi, were used for reprogramming. XaXi
GFP
NSCs, whose GFP reporter was silenced, were fused with HM1 ES cells (XY) to induce pluripotent reprogramming. The Xi
GFP
of NSCs were found to be activated on day 4 post-fusion, indicating reactivation of the Xi. Hybrid cells showed pluripotent cell-specific characteristics cells including inactivation of the NSC marker
Nestin
, DNA demethylation of
Oct4
, DNA methylation of
Nestin
, and reactivation of the Xi. Following differentiation of the (GFP-positive) hybrid cells through embryoid body formation, the proportion of GFP-negative cells was found to be approximately 26 %, indicating that there was random inactivation of one of the three Xas. Here, we showed that the Xi of somatic cells is reprogrammed to the Xa state and that cellular differentiation occurs randomly, i.e., regardless of the Xa or Xi state, indicating that the memory of the Xi of somatic cells has been erased and reset to the ground state (i.e., inner cell mass-like state), indicating that random X-chromosome inactivation occurs upon differentiation. |
---|---|
ISSN: | 1420-682X 1420-9071 |
DOI: | 10.1007/s00018-012-1139-6 |