scX: a user-friendly tool for scRNAseq exploration

Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, explorati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics advances 2024, Vol.4 (1), p.vbae062
Hauptverfasser: Waichman, Tomás V, Vercesi, M L, Berardino, Ariel A, Beckel, Maximiliano S, Giacomini, Damiana, Rasetto, Natalí B, Herrero, Magalí, Di Bella, Daniela J, Arlotta, Paola, Schinder, Alejandro F, Chernomoretz, Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-cell RNA sequencing (scRNAseq) has transformed our ability to explore biological systems. Nevertheless, proficient expertise is essential for handling and interpreting the data. In this article, we present scX, an R package built on the Shiny framework that streamlines the analysis, exploration, and visualization of single-cell experiments. With an interactive graphic interface, implemented as a web application, scX provides easy access to key scRNAseq analyses, including marker identification, gene expression profiling, and differential gene expression analysis. Additionally, scX seamlessly integrates with commonly used single-cell Seurat and SingleCellExperiment R objects, resulting in efficient processing and visualization of varied datasets. Overall, scX serves as a valuable and user-friendly tool for effortless exploration and sharing of single-cell data, simplifying some of the complexities inherent in scRNAseq analysis. Source code can be downloaded from https://github.com/chernolabs/scX. A docker image is available from dockerhub as chernolabs/scx.
ISSN:2635-0041
2635-0041
DOI:10.1093/bioadv/vbae062