Classification of anisotropic Triebel-Lizorkin spaces
This paper provides a characterization of expansive matrices A ∈ GL ( d , R ) generating the same anisotropic homogeneous Triebel–Lizorkin space F ˙ p , q α ( A ) for α ∈ R and p , q ∈ ( 0 , ∞ ] . It is shown that F ˙ p , q α ( A ) = F ˙ p , q α ( B ) if and only if the homogeneous quasi-norms ρ A ,...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2024, Vol.389 (2), p.1883-1923 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper provides a characterization of expansive matrices
A
∈
GL
(
d
,
R
)
generating the same anisotropic homogeneous Triebel–Lizorkin space
F
˙
p
,
q
α
(
A
)
for
α
∈
R
and
p
,
q
∈
(
0
,
∞
]
. It is shown that
F
˙
p
,
q
α
(
A
)
=
F
˙
p
,
q
α
(
B
)
if and only if the homogeneous quasi-norms
ρ
A
,
ρ
B
associated to the matrices
A
,
B
are equivalent, except for the case
F
˙
p
,
2
0
=
L
p
with
p
∈
(
1
,
∞
)
. The obtained results complement and extend the classification of anisotropic Hardy spaces
H
p
(
A
)
=
F
˙
p
,
2
0
(
A
)
,
p
∈
(
0
,
1
]
, in Bownik (Mem Am Math Soc 164(781):vi+122, 2003). |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-023-02690-y |