UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species

Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-05, Vol.121 (19), p.e2402045121-e2402045121
Hauptverfasser: Wang, Huidong, Song, Jing, Hunt, Benjamin J, Zuo, Kairan, Zhou, Huiru, Hayward, Angela, Li, Bingbing, Xiao, Yajuan, Geng, Xing, Bass, Chris, Zhou, Shutang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the genus. Comparative genomic analyses of species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist . CRISPR-Cas9 knockouts of the three main UGT gene clusters of revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist species, , which specializes on plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in . Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2402045121