Prediction model for future OHCAs based on geospatial and demographic data: An observational study

This study used demographic data in a novel prediction model to identify areas with high risk of out-of-hospital cardiac arrest (OHCA) in order to target prehospital preparedness. We combined data from the nationwide Danish Cardiac Arrest Registry with geographical- and demographic data on a hectare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2024-05, Vol.103 (19), p.e38070-e38070
Hauptverfasser: Bundgaard Ringgren, Kristian, Ung, Vilde, Gerds, Thomas Alexander, Kragholm, Kristian Hay, Ascanius Jacobsen, Peter, Lyng Lindgren, Filip, Grabmayr, Anne Juul, Christensen, Helle Collatz, Mills, Elisabeth Helen Anna, Kollander Jakobsen, Louise, Yonis, Harman, Hansen, Carolina Malta, Folke, Fredrik, Lippert, Freddy, Torp-Pedersen, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study used demographic data in a novel prediction model to identify areas with high risk of out-of-hospital cardiac arrest (OHCA) in order to target prehospital preparedness. We combined data from the nationwide Danish Cardiac Arrest Registry with geographical- and demographic data on a hectare level. Hectares were classified in a hierarchy according to characteristics and pooled to square kilometers (km2). Historical OHCA incidence of each hectare group was supplemented with a predicted annual risk of at least 1 OHCA to ensure future applicability. We recorded 19,090 valid OHCAs during 2016 to 2019. The mean annual OHCA rate was highest in residential areas with no point of public interest and 100 to 1000 residents per hectare (9.7/year/km2) followed by pedestrian streets with multiple shops (5.8/year/km2), areas with no point of public interest and 50 to 100 residents (5.5/year/km2), and malls with a mean annual incidence per km2 of 4.6. Other high incidence areas were public transport stations, schools and areas without a point of public interest and 10 to 50 residents. These areas combined constitute 1496 km2 annually corresponding to 3.4% of the total area of Denmark and account for 65% of the OHCA incidence. Our prediction model confirms these areas to be of high risk and outperforms simple previous incidence in identifying future risk-sites. Two thirds of out-of-hospital cardiac arrests were identified in only 3.4% of the area of Denmark. This area was easily identified as having multiple residents or having airports, malls, pedestrian shopping streets or schools. This result has important implications for targeted intervention such as automatic defibrillators available to the public. Further, demographic information should be considered when implementing such interventions.
ISSN:0025-7974
1536-5964
DOI:10.1097/MD.0000000000038070