APTAnet: an atom-level peptide-TCR interaction affinity prediction model

The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysics reports 2024-02, Vol.10 (1), p.1-14
Hauptverfasser: Xiong, Peng, Liang, Anyi, Cai, Xunhui, Xia, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.
ISSN:2364-3420
2364-3439
2364-3420
DOI:10.52601/bpr.2023.230037