SAN: Mitigating spatial covariance heterogeneity in cortical thickness data collected from multiple scanners or sites

In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter‐scanner biases), which need to be corrected before down...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2024-05, Vol.45 (7), p.e26692-n/a
Hauptverfasser: Zhang, Rongqian, Chen, Linxi, Oliver, Lindsay D., Voineskos, Aristotle N., Park, Jun Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter‐scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter‐scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex‐level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex‐level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner‐invariant and scanner‐specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package. We proposed a new harmonization method to address and mitigate spatial covariance heterogeneity of vertex‐level cortical thickness data in multi‐scanner neuroimaging studies. Our data analysis shows that between‐scanner heterogeneity in means, variances, and covariances is significantly reduced in the whole brain by probabilistic modeling of covariances via spatial Gaussian process.
ISSN:1065-9471
1097-0193
1097-0193
DOI:10.1002/hbm.26692