Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties

We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-02, Vol.20 (3), p.1347-1357
Hauptverfasser: Kurnikov, Igor V., Pereyaslavets, Leonid, Kamath, Ganesh, Sakipov, Serzhan N., Voronina, Ekaterina, Butin, Oleg, Illarionov, Alexey, Leontyev, Igor, Nawrocki, Grzegorz, Darkhovskiy, Mikhail, Olevanov, Michael, Ivahnenko, Ilya, Chen, YuChun, Lock, Christopher B., Levitt, Michael, Kornberg, Roger D., Fain, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1357
container_issue 3
container_start_page 1347
container_title Journal of chemical theory and computation
container_volume 20
creator Kurnikov, Igor V.
Pereyaslavets, Leonid
Kamath, Ganesh
Sakipov, Serzhan N.
Voronina, Ekaterina
Butin, Oleg
Illarionov, Alexey
Leontyev, Igor
Nawrocki, Grzegorz
Darkhovskiy, Mikhail
Olevanov, Michael
Ivahnenko, Ilya
Chen, YuChun
Lock, Christopher B.
Levitt, Michael
Kornberg, Roger D.
Fain, Boris
description We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.
doi_str_mv 10.1021/acs.jctc.3c00921
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11042917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957756991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-79b6a9dafe291b0646573fae28e4b1cf45ac0eb9b9414c84f382c3f3cf65ff5b3</originalsourceid><addsrcrecordid>eNp1kktvEzEUhUeIipbCnhWyxIYFCfbY8_AKoaiBSmkAKawtj-eaOnjGqR-t-p_4kTidNAIkVrZ1v3OOr32L4hXBc4JL8l6qMN-qqOZUYcxL8qQ4IxXjM16X9dPjnrSnxfMQthhTykr6rDilbckwa6uz4tcakpcWrSHeOf8TLZz3oKJxY0DRocsxgh-cBZWs9NNRPpTRJhcCchpJdHUEls4rQEsDtkcLuYvJA1onZSHXviU5xjSgC61zQkBmzIjd66a4bLUyN8n0aHO9D-3vRzkYhb56twMfDYQXxYmWNsDLw3pefF9ebBafZ6svny4XH1czSRsaZw3vasl7qaHkpMM1q6uGagllC6wjSrNKKgwd7zgjTLVM5-dQVFOl60rrqqPnxYfJd5e6AXoFY8xvJHbeDNLfCyeN-Lsymmvxw90KQjDLmU12eHtw8O4mQYhiMEGBtXIEl4IoeVnjpq0Zz-ibf9CtS37M_WWqapqq5pxkCk-U8i4ED_p4G4LFfhZEngWxnwVxmIUsef1nF0fB4-dn4N0EPEgfQ__r9xvDY8Vz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957756991</pqid></control><display><type>article</type><title>Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties</title><source>ACS Publications</source><creator>Kurnikov, Igor V. ; Pereyaslavets, Leonid ; Kamath, Ganesh ; Sakipov, Serzhan N. ; Voronina, Ekaterina ; Butin, Oleg ; Illarionov, Alexey ; Leontyev, Igor ; Nawrocki, Grzegorz ; Darkhovskiy, Mikhail ; Olevanov, Michael ; Ivahnenko, Ilya ; Chen, YuChun ; Lock, Christopher B. ; Levitt, Michael ; Kornberg, Roger D. ; Fain, Boris</creator><creatorcontrib>Kurnikov, Igor V. ; Pereyaslavets, Leonid ; Kamath, Ganesh ; Sakipov, Serzhan N. ; Voronina, Ekaterina ; Butin, Oleg ; Illarionov, Alexey ; Leontyev, Igor ; Nawrocki, Grzegorz ; Darkhovskiy, Mikhail ; Olevanov, Michael ; Ivahnenko, Ilya ; Chen, YuChun ; Lock, Christopher B. ; Levitt, Michael ; Kornberg, Roger D. ; Fain, Boris</creatorcontrib><description>We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.3c00921</identifier><identifier>PMID: 38240485</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological properties ; Centroids ; Condensed Matter, Interfaces, and Materials ; Distribution functions ; Free energy ; Mathematical analysis ; Molecular dynamics ; Neural networks ; Nuclear capture ; Radial distribution ; Simulation ; Solvation ; Thermodynamic properties ; Water</subject><ispartof>Journal of chemical theory and computation, 2024-02, Vol.20 (3), p.1347-1357</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 13, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a373t-79b6a9dafe291b0646573fae28e4b1cf45ac0eb9b9414c84f382c3f3cf65ff5b3</cites><orcidid>0000-0002-7115-5857 ; 0000-0001-7414-4670 ; 0000-0002-4087-5894 ; 0009-0008-5760-7686 ; 0000-0002-9862-6073 ; 0000-0001-5410-2318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.3c00921$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.3c00921$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38240485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurnikov, Igor V.</creatorcontrib><creatorcontrib>Pereyaslavets, Leonid</creatorcontrib><creatorcontrib>Kamath, Ganesh</creatorcontrib><creatorcontrib>Sakipov, Serzhan N.</creatorcontrib><creatorcontrib>Voronina, Ekaterina</creatorcontrib><creatorcontrib>Butin, Oleg</creatorcontrib><creatorcontrib>Illarionov, Alexey</creatorcontrib><creatorcontrib>Leontyev, Igor</creatorcontrib><creatorcontrib>Nawrocki, Grzegorz</creatorcontrib><creatorcontrib>Darkhovskiy, Mikhail</creatorcontrib><creatorcontrib>Olevanov, Michael</creatorcontrib><creatorcontrib>Ivahnenko, Ilya</creatorcontrib><creatorcontrib>Chen, YuChun</creatorcontrib><creatorcontrib>Lock, Christopher B.</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><creatorcontrib>Kornberg, Roger D.</creatorcontrib><creatorcontrib>Fain, Boris</creatorcontrib><title>Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.</description><subject>Biological properties</subject><subject>Centroids</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Distribution functions</subject><subject>Free energy</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Neural networks</subject><subject>Nuclear capture</subject><subject>Radial distribution</subject><subject>Simulation</subject><subject>Solvation</subject><subject>Thermodynamic properties</subject><subject>Water</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kktvEzEUhUeIipbCnhWyxIYFCfbY8_AKoaiBSmkAKawtj-eaOnjGqR-t-p_4kTidNAIkVrZ1v3OOr32L4hXBc4JL8l6qMN-qqOZUYcxL8qQ4IxXjM16X9dPjnrSnxfMQthhTykr6rDilbckwa6uz4tcakpcWrSHeOf8TLZz3oKJxY0DRocsxgh-cBZWs9NNRPpTRJhcCchpJdHUEls4rQEsDtkcLuYvJA1onZSHXviU5xjSgC61zQkBmzIjd66a4bLUyN8n0aHO9D-3vRzkYhb56twMfDYQXxYmWNsDLw3pefF9ebBafZ6svny4XH1czSRsaZw3vasl7qaHkpMM1q6uGagllC6wjSrNKKgwd7zgjTLVM5-dQVFOl60rrqqPnxYfJd5e6AXoFY8xvJHbeDNLfCyeN-Lsymmvxw90KQjDLmU12eHtw8O4mQYhiMEGBtXIEl4IoeVnjpq0Zz-ibf9CtS37M_WWqapqq5pxkCk-U8i4ED_p4G4LFfhZEngWxnwVxmIUsef1nF0fB4-dn4N0EPEgfQ__r9xvDY8Vz</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Kurnikov, Igor V.</creator><creator>Pereyaslavets, Leonid</creator><creator>Kamath, Ganesh</creator><creator>Sakipov, Serzhan N.</creator><creator>Voronina, Ekaterina</creator><creator>Butin, Oleg</creator><creator>Illarionov, Alexey</creator><creator>Leontyev, Igor</creator><creator>Nawrocki, Grzegorz</creator><creator>Darkhovskiy, Mikhail</creator><creator>Olevanov, Michael</creator><creator>Ivahnenko, Ilya</creator><creator>Chen, YuChun</creator><creator>Lock, Christopher B.</creator><creator>Levitt, Michael</creator><creator>Kornberg, Roger D.</creator><creator>Fain, Boris</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7115-5857</orcidid><orcidid>https://orcid.org/0000-0001-7414-4670</orcidid><orcidid>https://orcid.org/0000-0002-4087-5894</orcidid><orcidid>https://orcid.org/0009-0008-5760-7686</orcidid><orcidid>https://orcid.org/0000-0002-9862-6073</orcidid><orcidid>https://orcid.org/0000-0001-5410-2318</orcidid></search><sort><creationdate>20240213</creationdate><title>Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties</title><author>Kurnikov, Igor V. ; Pereyaslavets, Leonid ; Kamath, Ganesh ; Sakipov, Serzhan N. ; Voronina, Ekaterina ; Butin, Oleg ; Illarionov, Alexey ; Leontyev, Igor ; Nawrocki, Grzegorz ; Darkhovskiy, Mikhail ; Olevanov, Michael ; Ivahnenko, Ilya ; Chen, YuChun ; Lock, Christopher B. ; Levitt, Michael ; Kornberg, Roger D. ; Fain, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-79b6a9dafe291b0646573fae28e4b1cf45ac0eb9b9414c84f382c3f3cf65ff5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological properties</topic><topic>Centroids</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Distribution functions</topic><topic>Free energy</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Neural networks</topic><topic>Nuclear capture</topic><topic>Radial distribution</topic><topic>Simulation</topic><topic>Solvation</topic><topic>Thermodynamic properties</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurnikov, Igor V.</creatorcontrib><creatorcontrib>Pereyaslavets, Leonid</creatorcontrib><creatorcontrib>Kamath, Ganesh</creatorcontrib><creatorcontrib>Sakipov, Serzhan N.</creatorcontrib><creatorcontrib>Voronina, Ekaterina</creatorcontrib><creatorcontrib>Butin, Oleg</creatorcontrib><creatorcontrib>Illarionov, Alexey</creatorcontrib><creatorcontrib>Leontyev, Igor</creatorcontrib><creatorcontrib>Nawrocki, Grzegorz</creatorcontrib><creatorcontrib>Darkhovskiy, Mikhail</creatorcontrib><creatorcontrib>Olevanov, Michael</creatorcontrib><creatorcontrib>Ivahnenko, Ilya</creatorcontrib><creatorcontrib>Chen, YuChun</creatorcontrib><creatorcontrib>Lock, Christopher B.</creatorcontrib><creatorcontrib>Levitt, Michael</creatorcontrib><creatorcontrib>Kornberg, Roger D.</creatorcontrib><creatorcontrib>Fain, Boris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurnikov, Igor V.</au><au>Pereyaslavets, Leonid</au><au>Kamath, Ganesh</au><au>Sakipov, Serzhan N.</au><au>Voronina, Ekaterina</au><au>Butin, Oleg</au><au>Illarionov, Alexey</au><au>Leontyev, Igor</au><au>Nawrocki, Grzegorz</au><au>Darkhovskiy, Mikhail</au><au>Olevanov, Michael</au><au>Ivahnenko, Ilya</au><au>Chen, YuChun</au><au>Lock, Christopher B.</au><au>Levitt, Michael</au><au>Kornberg, Roger D.</au><au>Fain, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-02-13</date><risdate>2024</risdate><volume>20</volume><issue>3</issue><spage>1347</spage><epage>1357</epage><pages>1347-1357</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38240485</pmid><doi>10.1021/acs.jctc.3c00921</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7115-5857</orcidid><orcidid>https://orcid.org/0000-0001-7414-4670</orcidid><orcidid>https://orcid.org/0000-0002-4087-5894</orcidid><orcidid>https://orcid.org/0009-0008-5760-7686</orcidid><orcidid>https://orcid.org/0000-0002-9862-6073</orcidid><orcidid>https://orcid.org/0000-0001-5410-2318</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-02, Vol.20 (3), p.1347-1357
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11042917
source ACS Publications
subjects Biological properties
Centroids
Condensed Matter, Interfaces, and Materials
Distribution functions
Free energy
Mathematical analysis
Molecular dynamics
Neural networks
Nuclear capture
Radial distribution
Simulation
Solvation
Thermodynamic properties
Water
title Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Corrections%20to%20Intermolecular%20Interaction%20Terms%20of%20a%20Molecular%20Force%20Field%20Capture%20Nuclear%20Quantum%20Effects%20in%20Calculations%20of%20Liquid%20Thermodynamic%20Properties&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kurnikov,%20Igor%20V.&rft.date=2024-02-13&rft.volume=20&rft.issue=3&rft.spage=1347&rft.epage=1357&rft.pages=1347-1357&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.3c00921&rft_dat=%3Cproquest_pubme%3E2957756991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957756991&rft_id=info:pmid/38240485&rfr_iscdi=true