Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties

We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2024-02, Vol.20 (3), p.1347-1357
Hauptverfasser: Kurnikov, Igor V., Pereyaslavets, Leonid, Kamath, Ganesh, Sakipov, Serzhan N., Voronina, Ekaterina, Butin, Oleg, Illarionov, Alexey, Leontyev, Igor, Nawrocki, Grzegorz, Darkhovskiy, Mikhail, Olevanov, Michael, Ivahnenko, Ilya, Chen, YuChun, Lock, Christopher B., Levitt, Michael, Kornberg, Roger D., Fain, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.3c00921