Chirality Probe of Twisted Bilayer Graphene in the Linear Transport Regime

We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonrecip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-04, Vol.24 (15), p.4478-4484
Hauptverfasser: Bahamon, Dario A., Gómez-Santos, Guillermo, Efetov, Dmitri K., Stauber, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)­current in the absence of a source–drain voltage whose direction is determined by its chirality.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.4c00371