Guided diffusion for molecular generation with interaction prompt
Molecular generative models have exhibited promising capabilities in designing molecules from scratch with high binding affinities in a predetermined protein pocket, offering potential synergies with traditional structural-based drug design strategy. However, the generative processes of such models...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2024-03, Vol.25 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular generative models have exhibited promising capabilities in designing molecules from scratch with high binding affinities in a predetermined protein pocket, offering potential synergies with traditional structural-based drug design strategy. However, the generative processes of such models are random and the atomic interaction information between ligand and protein are ignored. On the other hand, the ligand has high propensity to bind with residues called hotspots. Hotspot residues contribute to the majority of the binding free energies and have been recognized as appealing targets for designed molecules. In this work, we develop an interaction prompt guided diffusion model, InterDiff to deal with the challenges. Four kinds of atomic interactions are involved in our model and represented as learnable vector embeddings. These embeddings serve as conditions for individual residue to guide the molecular generative process. Comprehensive in silico experiments evince that our model could generate molecules with desired ligand-protein interactions in a guidable way. Furthermore, we validate InterDiff on two realistic protein-based therapeutic agents. Results show that InterDiff could generate molecules with better or similar binding mode compared to known targeted drugs. |
---|---|
ISSN: | 1467-5463 1477-4054 |
DOI: | 10.1093/bib/bbae174 |