How Older Adults Regulate Lateral Stepping on Narrowing Walking Paths

Walking humans often navigate complex, varying walking paths. To reduce falls, we must first determine how older adults purposefully vary their steps in contexts that challenge balance. Here, 20 young (21.7±2.6 yrs) and 18 older (71.6±6.0 yrs) healthy adults walked on virtual paths that slowly narro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2023-11, Vol.160, p.111836-111836, Article 111836
Hauptverfasser: Kazanski, Meghan E., Cusumano, Joseph P., Dingwell, Jonathan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Walking humans often navigate complex, varying walking paths. To reduce falls, we must first determine how older adults purposefully vary their steps in contexts that challenge balance. Here, 20 young (21.7±2.6 yrs) and 18 older (71.6±6.0 yrs) healthy adults walked on virtual paths that slowly narrowed (from 45 cm to as narrow as 5 cm). Participants could switch onto an “easier” path whenever they chose. We applied our Goal Equivalent Manifold framework to quantify how participants adjusted their lateral stepping variability and step-to-step corrections of step width and lateral position as these paths narrowed. We also extracted these characteristics where participants switched paths. As paths narrowed, all participants reduced their lateral stepping variability, but older adults less so. To stay on the narrowing paths, young adults increasingly corrected step-to-step deviations in lateral position more, by correcting step-to-step deviations in step width less. Conversely, as older adults also increasingly corrected lateral position deviations, they did so without sacrificing correcting step-to-step deviations in step width, presumably to preserve balance. While older adults left the narrowing paths sooner, several of their lateral stepping characteristics remained similar to those of younger adults. While older adults largely maintained overall walking performance per se, they did so by changing how they balanced the competing stepping regulation requirements intrinsic to the task: maintaining position vs. step width. Thus, balancing how to achieve multiple concurrent stepping goals while walking provides older adults the flexibility they need to appropriately adapt their stepping on continuously narrowing walking paths.
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2023.111836