Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance

This study investigates the impact of post-synthesis oxidation on the performance of superparamagnetic iron oxide nanoparticles (SPIONs) in magnetic particle imaging (MPI), an emerging technology with applications in diagnostic imaging and theranostics. SPIONs synthesized from iron oleate were subje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-01, Vol.7 (1), p.279-291
Hauptverfasser: Velazquez-Albino, Ambar C., Nozka, Aniela, Melnyk, Andrii, Good, Hayden J., Rinaldi-Ramos, Carlos M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the impact of post-synthesis oxidation on the performance of superparamagnetic iron oxide nanoparticles (SPIONs) in magnetic particle imaging (MPI), an emerging technology with applications in diagnostic imaging and theranostics. SPIONs synthesized from iron oleate were subjected to a post-synthesis oxidation treatment with a 1% oxygen in argon mixture. MPI performance, gauged via signal intensity and resolution using a MOMENTUM scanner, was correlated to the nanoparticles’ physical and magnetic properties. Post-synthesis oxidation did not alter physical attributes like size and shape, but significantly enhanced magnetic properties. Saturation magnetization increased from 52% to 93% of the bulk value for magnetite, leading to better MPI performance in terms of signal intensity and resolution. However, the observed MPI performance did not fully align with predictions based on the ideal Langevin model, indicating the need for considering factors such as relaxation and shape anisotropy. The findings underscore the potential of post-synthesis oxidation as a method to fine-tune magnetic properties of SPIONs and improve MPI performance, and the need for reproducible synthesis methods that afford finely tuned control of nanoparticle size, shape, and magnetic properties.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.3c04442