Insights into NdIII to YbIII Energy Transfer and Its Implications in Luminescence Thermometry
This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2024-04, Vol.36 (7), p.3452-3463 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 → 4I15/2] → YbIII [2F7/2 → 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 → 4I11/2] → YbIII [2F7/2 → 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII → YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.4c00362 |