The association of appendicular lean mass and grip strength with low-density lipoprotein, very low-density lipoprotein, and high-density lipoprotein particle diameter: a Mendelian randomization study of the UK Biobank cohort

Abstract Aims Reduced muscle mass and reduced strength are frequently associated with both alterations in blood lipids and poorer cardiometabolic outcomes in epidemiological studies; however, a causal association cannot be determined from such observations. Two-sample Mendelian randomization (MR) wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European heart journal open 2024-03, Vol.4 (2), p.oeae019-oeae019
Hauptverfasser: Kirwan, Richard, Mazidi, Mohsen, Butler, Tom, Perez de Heredia, Fatima, Lip, Gregory Y H, Davies, Ian G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Aims Reduced muscle mass and reduced strength are frequently associated with both alterations in blood lipids and poorer cardiometabolic outcomes in epidemiological studies; however, a causal association cannot be determined from such observations. Two-sample Mendelian randomization (MR) was applied to assess the association of genetically determined appendicular lean mass (ALM) and handgrip strength (HGS) with serum lipid particle diameter. Methods and results Mendelian randomization was implemented using summary-level data from the largest genome-wide association studies on ALM (n = 450 243), HGS (n = 223 315), and lipoprotein [low-density lipoprotein (LDL), very LDL (VLDL), and high-density lipoprotein (HDL)] particle diameters (n = 115 078). Inverse variance-weighted (IVW) method was used to calculate the causal estimates. Weighted median-based method, MR-Egger, and leave-one-out method were applied as sensitivity analysis. Greater ALM had a statistically significant positive effect on HDL particle diameter (MR-Egger: β = 0.055, SE = 0.031, P = 0.081; IVW: β = 0.068, SE = 0.014, P < 0.001) and a statistically significant negative effect on VLDL particle diameter (MR-Egger: β = −0.114, SE = 0.039, P = 0.003; IVW: β = −0.081, SE = 0.017, P < 0.001). Similarly, greater HGS had a statistically significant positive effect on HDL particle diameter (MR-Egger: β = 0.433, SE = 0.184, P = 0.019; IVW: β = 0.121, SE = 0.052, P = 0.021) and a statistically significant negative effect on VLDL particle diameter (MR-Egger: β = −0.416, SE = 0.163, P = 0.011; IVW: β = −0.122, SE = 0.046, P = 0.009). There was no statistically significant effect of either ALM or HGS on LDL particle diameter. Conclusion There were potentially causal associations between both increasing ALM and HGS and increasing HDL particle size and decreasing VLDL particle size. These causal associations may offer possibilities for interventions aimed at improving cardiovascular disease risk profile. Lay Summary Higher levels of muscle mass in the arms and legs and grip strength are associated with larger high-density lipoprotein particles and smaller very low-density lipoprotein particles in the blood, which may indicate a lower risk of some forms of heart disease.
ISSN:2752-4191
2752-4191
DOI:10.1093/ehjopen/oeae019