Participatory hackathon to determine ecological relevant endpoints for a neurotoxin to aquatic and benthic invertebrates

The aim of this study is twofold: i) to determine innovative yet sensitive endpoints for sulfoxaflor and ii) to develop best practices for innovative teaching in ecotoxicology. To this end, a group of 52 MSc students participated in an environmental hackathon , during which they did creative toxicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-03, Vol.31 (15), p.22885-22899
Hauptverfasser: Rasmussen, Sofie B., Bosker, Thijs, Ramanand, Giovani G., Vijver, Martina G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study is twofold: i) to determine innovative yet sensitive endpoints for sulfoxaflor and ii) to develop best practices for innovative teaching in ecotoxicology. To this end, a group of 52 MSc students participated in an environmental hackathon , during which they did creative toxicity testing on 5 freshwater invertebrate species: Daphnia magna, Chironomus riparius, Asellus aquaticus, Lymnaea stagnalis, and Anisus vortex . Involving the students in an active learning environment stimulated increased creativity and productivity. In total, 28 endpoints were investigated, including standard endpoints (e.g., mortality) as well as biomechanistic and energy-related endpoints. Despite high variances in the results, likely linked to the limited lab experience of the students and interpersonal differences, a promising set of endpoints was selected for further investigation. A more targeted follow-up experiment focused on the most promising organism and set of endpoints: biomechanistic endpoints of C. riparius larvae. Larvae were exposed to a range of sulfoxaflor concentrations (0.90–67.2 μg/L) for 21 days. Video tracking showed that undulation and swimming were significantly reduced at 11.1 μg sulfoxaflor/L after 9 days of exposure, and an EC 50 = 10.6 μg/L for mean velocities of the larvae in the water phase was found. Biomechanistic endpoints proved much more sensitive than mortality, for which an LC 50 value of 116 μg/L was found on Day 9. Our results show that performing a hackathon with students has excellent potential to find sensitive endpoints that can subsequently be verified using more targeted and professional follow-up experiments. Furthermore, utilising hackathon events in teaching can increase students’ enthusiasm about ecotoxicology, driving better learning experiences.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-32566-w