Causal Estimation of Long-term Intervention Cost-effectiveness Using Genetic Instrumental Variables: An Application to Cancer

Background This article demonstrates a means of assessing long-term intervention cost-effectiveness in the absence of data from randomized controlled trials and without recourse to Markov simulation or similar types of cohort simulation. Methods Using a Mendelian randomization study design, we devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical decision making 2024-04, Vol.44 (3), p.283-295
Hauptverfasser: Dixon, Padraig, Martin, Richard M., Harrison, Sean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background This article demonstrates a means of assessing long-term intervention cost-effectiveness in the absence of data from randomized controlled trials and without recourse to Markov simulation or similar types of cohort simulation. Methods Using a Mendelian randomization study design, we developed causal estimates of the genetically predicted effect of bladder, breast, colorectal, lung, multiple myeloma, ovarian, prostate, and thyroid cancers on health care costs and quality-adjusted life-years (QALYs) using outcome data drawn from the UK Biobank cohort. We then used these estimates in a simulation model to estimate the cost-effectiveness of a hypothetical population-wide preventative intervention based on a repurposed class of antidiabetic drugs known as sodium-glucose cotransporter-2 (SGLT2) inhibitors very recently shown to reduce the odds of incident prostate cancer. Results Genetic liability to prostate cancer and breast cancer had material causal impacts on either or both health care costs and QALYs. Mendelian randomization results for the less common cancers were associated with considerable uncertainty. SGLT2 inhibition was unlikely to be a cost-effective preventative intervention for prostate cancer, although this conclusion depended on the price at which these drugs would be offered for a novel anticancer indication. Implications Our new causal estimates of cancer exposures on health economic outcomes may be used as inputs into decision-analytic models of cancer interventions such as screening programs or simulations of longer-term outcomes associated with therapies investigated in randomized controlled trials with short follow-ups. Our method allowed us to rapidly and efficiently estimate the cost-effectiveness of a hypothetical population-scale anticancer intervention to inform and complement other means of assessing long-term intervention value. Highlights The article demonstrates a novel method of assessing long-term intervention cost-effectiveness without relying on randomized controlled trials or cohort simulations. Mendelian randomization was used to estimate the causal effects of certain cancers on health care costs and quality-adjusted life-years (QALYs) using data from the UK Biobank cohort. Given causal data on the association of different cancer exposures on costs and QALYs, it was possible to simulate the cost-effectiveness of an anticancer intervention. Genetic liability to prostate cancer and breast cancer significantly affec
ISSN:0272-989X
1552-681X
1552-681X
DOI:10.1177/0272989X241232607