MMR vaccination induces trained immunity via functional and metabolic reprogramming of γδ T cells
The measles, mumps and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed traine...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2024-04, Vol.134 (7), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The measles, mumps and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. By using single-cell RNA-sequencing, we found that MMR caused transcriptomic changes in CD14-positive monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFNγ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination. |
---|---|
ISSN: | 1558-8238 0021-9738 1558-8238 |
DOI: | 10.1172/JCI170848 |