High-fidelity spin qubit operation and algorithmic initialization above 1 K
The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale 1 – 10 . However, the operation of the large number of qubits required for advantageous quantum application...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-03, Vol.627 (8005), p.772-777 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 777 |
---|---|
container_issue | 8005 |
container_start_page | 772 |
container_title | Nature (London) |
container_volume | 627 |
creator | Huang, Jonathan Y. Su, Rocky Y. Lim, Wee Han Feng, MengKe van Straaten, Barnaby Severin, Brandon Gilbert, Will Dumoulin Stuyck, Nard Tanttu, Tuomo Serrano, Santiago Cifuentes, Jesus D. Hansen, Ingvild Seedhouse, Amanda E. Vahapoglu, Ensar Leon, Ross C. C. Abrosimov, Nikolay V. Pohl, Hans-Joachim Thewalt, Michael L. W. Hudson, Fay E. Escott, Christopher C. Ares, Natalia Bartlett, Stephen D. Morello, Andrea Saraiva, Andre Laucht, Arne Dzurak, Andrew S. Yang, Chih Hwan |
description | The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale
1
–
10
. However, the operation of the large number of qubits required for advantageous quantum applications
11
–
13
will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher
14
–
18
. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures
19
–
21
. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.
Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures. |
doi_str_mv | 10.1038/s41586-024-07160-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10972758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014004059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2d37d0f9484730de583c88a03ab4c42c5baac4900945a4fff5c0070d265018303</originalsourceid><addsrcrecordid>eNp9kb1OHDEUhS2UKCybvAAFGikNjeH6b-ypEELhRyClgdryeDy7RrP2Ys8gkafHsAshKahcnO-e66sPoX0CRwSYOs6cCFVjoByDJDVguoNmhMsa81rJL2gGQBUGxepdtJfzPQAIIvk3tMuUYKrhZIauL_1iiXvfucGPT1Ve-1A9TK0fq7h2yYw-hsqErjLDIiY_LlfeVj740ZvB_9nGbXx0Famuv6OvvRmy-7F95-ju_Nft2SW--X1xdXZ6gy2n9Yhpx2QHfcMVlww6JxSzShlgpuWFsKI1xvIGoOHC8L7vhQWQ0NFaAFEM2BydbHrXU7tynXVhTGbQ6-RXJj3paLz-Nwl-qRfxURNoJJVl3xwdbhtSfJhcHvXKZ-uGwQQXp6wZEA7AQTQF_fkfeh-nFMp9haKCNaQmpFB0Q9kUc06uf_8NAf0iS29k6SJLv8rStAwdfLzjfeTNTgHYBsglCguX_u7-pPYZaSafIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3025391611</pqid></control><display><type>article</type><title>High-fidelity spin qubit operation and algorithmic initialization above 1 K</title><source>SpringerLink Journals</source><source>Nature</source><creator>Huang, Jonathan Y. ; Su, Rocky Y. ; Lim, Wee Han ; Feng, MengKe ; van Straaten, Barnaby ; Severin, Brandon ; Gilbert, Will ; Dumoulin Stuyck, Nard ; Tanttu, Tuomo ; Serrano, Santiago ; Cifuentes, Jesus D. ; Hansen, Ingvild ; Seedhouse, Amanda E. ; Vahapoglu, Ensar ; Leon, Ross C. C. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Escott, Christopher C. ; Ares, Natalia ; Bartlett, Stephen D. ; Morello, Andrea ; Saraiva, Andre ; Laucht, Arne ; Dzurak, Andrew S. ; Yang, Chih Hwan</creator><creatorcontrib>Huang, Jonathan Y. ; Su, Rocky Y. ; Lim, Wee Han ; Feng, MengKe ; van Straaten, Barnaby ; Severin, Brandon ; Gilbert, Will ; Dumoulin Stuyck, Nard ; Tanttu, Tuomo ; Serrano, Santiago ; Cifuentes, Jesus D. ; Hansen, Ingvild ; Seedhouse, Amanda E. ; Vahapoglu, Ensar ; Leon, Ross C. C. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Escott, Christopher C. ; Ares, Natalia ; Bartlett, Stephen D. ; Morello, Andrea ; Saraiva, Andre ; Laucht, Arne ; Dzurak, Andrew S. ; Yang, Chih Hwan</creatorcontrib><description>The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale
1
–
10
. However, the operation of the large number of qubits required for advantageous quantum applications
11
–
13
will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher
14
–
18
. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures
19
–
21
. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.
Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07160-2</identifier><identifier>PMID: 38538941</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1017 ; 639/766/483/2802 ; 639/925/927/481 ; Accuracy ; Algorithms ; Cooling ; Cooling power ; Cryostats ; Electric noise ; Electrons ; Entangled states ; Fault tolerance ; Humanities and Social Sciences ; Machine learning ; multidisciplinary ; Parity ; Quantum computers ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Radio frequency ; Science ; Science (multidisciplinary) ; Silicon ; Thermal analysis ; Thermal energy</subject><ispartof>Nature (London), 2024-03, Vol.627 (8005), p.772-777</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 28, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-2d37d0f9484730de583c88a03ab4c42c5baac4900945a4fff5c0070d265018303</cites><orcidid>0000-0003-0134-3657 ; 0000-0001-7445-699X ; 0000-0003-4387-670X ; 0000-0002-2832-3237 ; 0000-0002-3950-1174 ; 0000-0002-1729-3052 ; 0009-0005-4220-1825 ; 0000-0002-2042-4754 ; 0000-0002-7209-9180 ; 0000-0001-7127-5982 ; 0000-0002-8713-150X ; 0000-0002-4765-2810 ; 0000-0002-8894-7383 ; 0000-0003-2588-7683 ; 0000-0003-1389-5096 ; 0000-0001-7892-7963 ; 0000-0003-2588-6322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07160-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07160-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38538941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jonathan Y.</creatorcontrib><creatorcontrib>Su, Rocky Y.</creatorcontrib><creatorcontrib>Lim, Wee Han</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>van Straaten, Barnaby</creatorcontrib><creatorcontrib>Severin, Brandon</creatorcontrib><creatorcontrib>Gilbert, Will</creatorcontrib><creatorcontrib>Dumoulin Stuyck, Nard</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Cifuentes, Jesus D.</creatorcontrib><creatorcontrib>Hansen, Ingvild</creatorcontrib><creatorcontrib>Seedhouse, Amanda E.</creatorcontrib><creatorcontrib>Vahapoglu, Ensar</creatorcontrib><creatorcontrib>Leon, Ross C. C.</creatorcontrib><creatorcontrib>Abrosimov, Nikolay V.</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L. W.</creatorcontrib><creatorcontrib>Hudson, Fay E.</creatorcontrib><creatorcontrib>Escott, Christopher C.</creatorcontrib><creatorcontrib>Ares, Natalia</creatorcontrib><creatorcontrib>Bartlett, Stephen D.</creatorcontrib><creatorcontrib>Morello, Andrea</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Dzurak, Andrew S.</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><title>High-fidelity spin qubit operation and algorithmic initialization above 1 K</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale
1
–
10
. However, the operation of the large number of qubits required for advantageous quantum applications
11
–
13
will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher
14
–
18
. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures
19
–
21
. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.
Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.</description><subject>639/766/119/1000/1017</subject><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cooling</subject><subject>Cooling power</subject><subject>Cryostats</subject><subject>Electric noise</subject><subject>Electrons</subject><subject>Entangled states</subject><subject>Fault tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Parity</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Radio frequency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><subject>Thermal analysis</subject><subject>Thermal energy</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kb1OHDEUhS2UKCybvAAFGikNjeH6b-ypEELhRyClgdryeDy7RrP2Ys8gkafHsAshKahcnO-e66sPoX0CRwSYOs6cCFVjoByDJDVguoNmhMsa81rJL2gGQBUGxepdtJfzPQAIIvk3tMuUYKrhZIauL_1iiXvfucGPT1Ve-1A9TK0fq7h2yYw-hsqErjLDIiY_LlfeVj740ZvB_9nGbXx0Famuv6OvvRmy-7F95-ju_Nft2SW--X1xdXZ6gy2n9Yhpx2QHfcMVlww6JxSzShlgpuWFsKI1xvIGoOHC8L7vhQWQ0NFaAFEM2BydbHrXU7tynXVhTGbQ6-RXJj3paLz-Nwl-qRfxURNoJJVl3xwdbhtSfJhcHvXKZ-uGwQQXp6wZEA7AQTQF_fkfeh-nFMp9haKCNaQmpFB0Q9kUc06uf_8NAf0iS29k6SJLv8rStAwdfLzjfeTNTgHYBsglCguX_u7-pPYZaSafIQ</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Huang, Jonathan Y.</creator><creator>Su, Rocky Y.</creator><creator>Lim, Wee Han</creator><creator>Feng, MengKe</creator><creator>van Straaten, Barnaby</creator><creator>Severin, Brandon</creator><creator>Gilbert, Will</creator><creator>Dumoulin Stuyck, Nard</creator><creator>Tanttu, Tuomo</creator><creator>Serrano, Santiago</creator><creator>Cifuentes, Jesus D.</creator><creator>Hansen, Ingvild</creator><creator>Seedhouse, Amanda E.</creator><creator>Vahapoglu, Ensar</creator><creator>Leon, Ross C. C.</creator><creator>Abrosimov, Nikolay V.</creator><creator>Pohl, Hans-Joachim</creator><creator>Thewalt, Michael L. W.</creator><creator>Hudson, Fay E.</creator><creator>Escott, Christopher C.</creator><creator>Ares, Natalia</creator><creator>Bartlett, Stephen D.</creator><creator>Morello, Andrea</creator><creator>Saraiva, Andre</creator><creator>Laucht, Arne</creator><creator>Dzurak, Andrew S.</creator><creator>Yang, Chih Hwan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0134-3657</orcidid><orcidid>https://orcid.org/0000-0001-7445-699X</orcidid><orcidid>https://orcid.org/0000-0003-4387-670X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3237</orcidid><orcidid>https://orcid.org/0000-0002-3950-1174</orcidid><orcidid>https://orcid.org/0000-0002-1729-3052</orcidid><orcidid>https://orcid.org/0009-0005-4220-1825</orcidid><orcidid>https://orcid.org/0000-0002-2042-4754</orcidid><orcidid>https://orcid.org/0000-0002-7209-9180</orcidid><orcidid>https://orcid.org/0000-0001-7127-5982</orcidid><orcidid>https://orcid.org/0000-0002-8713-150X</orcidid><orcidid>https://orcid.org/0000-0002-4765-2810</orcidid><orcidid>https://orcid.org/0000-0002-8894-7383</orcidid><orcidid>https://orcid.org/0000-0003-2588-7683</orcidid><orcidid>https://orcid.org/0000-0003-1389-5096</orcidid><orcidid>https://orcid.org/0000-0001-7892-7963</orcidid><orcidid>https://orcid.org/0000-0003-2588-6322</orcidid></search><sort><creationdate>20240328</creationdate><title>High-fidelity spin qubit operation and algorithmic initialization above 1 K</title><author>Huang, Jonathan Y. ; Su, Rocky Y. ; Lim, Wee Han ; Feng, MengKe ; van Straaten, Barnaby ; Severin, Brandon ; Gilbert, Will ; Dumoulin Stuyck, Nard ; Tanttu, Tuomo ; Serrano, Santiago ; Cifuentes, Jesus D. ; Hansen, Ingvild ; Seedhouse, Amanda E. ; Vahapoglu, Ensar ; Leon, Ross C. C. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Escott, Christopher C. ; Ares, Natalia ; Bartlett, Stephen D. ; Morello, Andrea ; Saraiva, Andre ; Laucht, Arne ; Dzurak, Andrew S. ; Yang, Chih Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2d37d0f9484730de583c88a03ab4c42c5baac4900945a4fff5c0070d265018303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/119/1000/1017</topic><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cooling</topic><topic>Cooling power</topic><topic>Cryostats</topic><topic>Electric noise</topic><topic>Electrons</topic><topic>Entangled states</topic><topic>Fault tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Parity</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Radio frequency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><topic>Thermal analysis</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jonathan Y.</creatorcontrib><creatorcontrib>Su, Rocky Y.</creatorcontrib><creatorcontrib>Lim, Wee Han</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>van Straaten, Barnaby</creatorcontrib><creatorcontrib>Severin, Brandon</creatorcontrib><creatorcontrib>Gilbert, Will</creatorcontrib><creatorcontrib>Dumoulin Stuyck, Nard</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Cifuentes, Jesus D.</creatorcontrib><creatorcontrib>Hansen, Ingvild</creatorcontrib><creatorcontrib>Seedhouse, Amanda E.</creatorcontrib><creatorcontrib>Vahapoglu, Ensar</creatorcontrib><creatorcontrib>Leon, Ross C. C.</creatorcontrib><creatorcontrib>Abrosimov, Nikolay V.</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L. W.</creatorcontrib><creatorcontrib>Hudson, Fay E.</creatorcontrib><creatorcontrib>Escott, Christopher C.</creatorcontrib><creatorcontrib>Ares, Natalia</creatorcontrib><creatorcontrib>Bartlett, Stephen D.</creatorcontrib><creatorcontrib>Morello, Andrea</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Dzurak, Andrew S.</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jonathan Y.</au><au>Su, Rocky Y.</au><au>Lim, Wee Han</au><au>Feng, MengKe</au><au>van Straaten, Barnaby</au><au>Severin, Brandon</au><au>Gilbert, Will</au><au>Dumoulin Stuyck, Nard</au><au>Tanttu, Tuomo</au><au>Serrano, Santiago</au><au>Cifuentes, Jesus D.</au><au>Hansen, Ingvild</au><au>Seedhouse, Amanda E.</au><au>Vahapoglu, Ensar</au><au>Leon, Ross C. C.</au><au>Abrosimov, Nikolay V.</au><au>Pohl, Hans-Joachim</au><au>Thewalt, Michael L. W.</au><au>Hudson, Fay E.</au><au>Escott, Christopher C.</au><au>Ares, Natalia</au><au>Bartlett, Stephen D.</au><au>Morello, Andrea</au><au>Saraiva, Andre</au><au>Laucht, Arne</au><au>Dzurak, Andrew S.</au><au>Yang, Chih Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity spin qubit operation and algorithmic initialization above 1 K</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-03-28</date><risdate>2024</risdate><volume>627</volume><issue>8005</issue><spage>772</spage><epage>777</epage><pages>772-777</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale
1
–
10
. However, the operation of the large number of qubits required for advantageous quantum applications
11
–
13
will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher
14
–
18
. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures
19
–
21
. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.
Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38538941</pmid><doi>10.1038/s41586-024-07160-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0134-3657</orcidid><orcidid>https://orcid.org/0000-0001-7445-699X</orcidid><orcidid>https://orcid.org/0000-0003-4387-670X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3237</orcidid><orcidid>https://orcid.org/0000-0002-3950-1174</orcidid><orcidid>https://orcid.org/0000-0002-1729-3052</orcidid><orcidid>https://orcid.org/0009-0005-4220-1825</orcidid><orcidid>https://orcid.org/0000-0002-2042-4754</orcidid><orcidid>https://orcid.org/0000-0002-7209-9180</orcidid><orcidid>https://orcid.org/0000-0001-7127-5982</orcidid><orcidid>https://orcid.org/0000-0002-8713-150X</orcidid><orcidid>https://orcid.org/0000-0002-4765-2810</orcidid><orcidid>https://orcid.org/0000-0002-8894-7383</orcidid><orcidid>https://orcid.org/0000-0003-2588-7683</orcidid><orcidid>https://orcid.org/0000-0003-1389-5096</orcidid><orcidid>https://orcid.org/0000-0001-7892-7963</orcidid><orcidid>https://orcid.org/0000-0003-2588-6322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-03, Vol.627 (8005), p.772-777 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10972758 |
source | SpringerLink Journals; Nature |
subjects | 639/766/119/1000/1017 639/766/483/2802 639/925/927/481 Accuracy Algorithms Cooling Cooling power Cryostats Electric noise Electrons Entangled states Fault tolerance Humanities and Social Sciences Machine learning multidisciplinary Parity Quantum computers Quantum computing Quantum dots Qubits (quantum computing) Radio frequency Science Science (multidisciplinary) Silicon Thermal analysis Thermal energy |
title | High-fidelity spin qubit operation and algorithmic initialization above 1 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20spin%20qubit%20operation%20and%20algorithmic%20initialization%20above%201%20K&rft.jtitle=Nature%20(London)&rft.au=Huang,%20Jonathan%20Y.&rft.date=2024-03-28&rft.volume=627&rft.issue=8005&rft.spage=772&rft.epage=777&rft.pages=772-777&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07160-2&rft_dat=%3Cproquest_pubme%3E3014004059%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3025391611&rft_id=info:pmid/38538941&rfr_iscdi=true |