High-fidelity spin qubit operation and algorithmic initialization above 1 K

The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale 1 – 10 . However, the operation of the large number of qubits required for advantageous quantum application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-03, Vol.627 (8005), p.772-777
Hauptverfasser: Huang, Jonathan Y., Su, Rocky Y., Lim, Wee Han, Feng, MengKe, van Straaten, Barnaby, Severin, Brandon, Gilbert, Will, Dumoulin Stuyck, Nard, Tanttu, Tuomo, Serrano, Santiago, Cifuentes, Jesus D., Hansen, Ingvild, Seedhouse, Amanda E., Vahapoglu, Ensar, Leon, Ross C. C., Abrosimov, Nikolay V., Pohl, Hans-Joachim, Thewalt, Michael L. W., Hudson, Fay E., Escott, Christopher C., Ares, Natalia, Bartlett, Stephen D., Morello, Andrea, Saraiva, Andre, Laucht, Arne, Dzurak, Andrew S., Yang, Chih Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 8005
container_start_page 772
container_title Nature (London)
container_volume 627
creator Huang, Jonathan Y.
Su, Rocky Y.
Lim, Wee Han
Feng, MengKe
van Straaten, Barnaby
Severin, Brandon
Gilbert, Will
Dumoulin Stuyck, Nard
Tanttu, Tuomo
Serrano, Santiago
Cifuentes, Jesus D.
Hansen, Ingvild
Seedhouse, Amanda E.
Vahapoglu, Ensar
Leon, Ross C. C.
Abrosimov, Nikolay V.
Pohl, Hans-Joachim
Thewalt, Michael L. W.
Hudson, Fay E.
Escott, Christopher C.
Ares, Natalia
Bartlett, Stephen D.
Morello, Andrea
Saraiva, Andre
Laucht, Arne
Dzurak, Andrew S.
Yang, Chih Hwan
description The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale 1 – 10 . However, the operation of the large number of qubits required for advantageous quantum applications 11 – 13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher 14 – 18 . Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures 19 – 21 . We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation. Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.
doi_str_mv 10.1038/s41586-024-07160-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10972758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014004059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2d37d0f9484730de583c88a03ab4c42c5baac4900945a4fff5c0070d265018303</originalsourceid><addsrcrecordid>eNp9kb1OHDEUhS2UKCybvAAFGikNjeH6b-ypEELhRyClgdryeDy7RrP2Ys8gkafHsAshKahcnO-e66sPoX0CRwSYOs6cCFVjoByDJDVguoNmhMsa81rJL2gGQBUGxepdtJfzPQAIIvk3tMuUYKrhZIauL_1iiXvfucGPT1Ve-1A9TK0fq7h2yYw-hsqErjLDIiY_LlfeVj740ZvB_9nGbXx0Famuv6OvvRmy-7F95-ju_Nft2SW--X1xdXZ6gy2n9Yhpx2QHfcMVlww6JxSzShlgpuWFsKI1xvIGoOHC8L7vhQWQ0NFaAFEM2BydbHrXU7tynXVhTGbQ6-RXJj3paLz-Nwl-qRfxURNoJJVl3xwdbhtSfJhcHvXKZ-uGwQQXp6wZEA7AQTQF_fkfeh-nFMp9haKCNaQmpFB0Q9kUc06uf_8NAf0iS29k6SJLv8rStAwdfLzjfeTNTgHYBsglCguX_u7-pPYZaSafIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3025391611</pqid></control><display><type>article</type><title>High-fidelity spin qubit operation and algorithmic initialization above 1 K</title><source>SpringerLink Journals</source><source>Nature</source><creator>Huang, Jonathan Y. ; Su, Rocky Y. ; Lim, Wee Han ; Feng, MengKe ; van Straaten, Barnaby ; Severin, Brandon ; Gilbert, Will ; Dumoulin Stuyck, Nard ; Tanttu, Tuomo ; Serrano, Santiago ; Cifuentes, Jesus D. ; Hansen, Ingvild ; Seedhouse, Amanda E. ; Vahapoglu, Ensar ; Leon, Ross C. C. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Escott, Christopher C. ; Ares, Natalia ; Bartlett, Stephen D. ; Morello, Andrea ; Saraiva, Andre ; Laucht, Arne ; Dzurak, Andrew S. ; Yang, Chih Hwan</creator><creatorcontrib>Huang, Jonathan Y. ; Su, Rocky Y. ; Lim, Wee Han ; Feng, MengKe ; van Straaten, Barnaby ; Severin, Brandon ; Gilbert, Will ; Dumoulin Stuyck, Nard ; Tanttu, Tuomo ; Serrano, Santiago ; Cifuentes, Jesus D. ; Hansen, Ingvild ; Seedhouse, Amanda E. ; Vahapoglu, Ensar ; Leon, Ross C. C. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Escott, Christopher C. ; Ares, Natalia ; Bartlett, Stephen D. ; Morello, Andrea ; Saraiva, Andre ; Laucht, Arne ; Dzurak, Andrew S. ; Yang, Chih Hwan</creatorcontrib><description>The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale 1 – 10 . However, the operation of the large number of qubits required for advantageous quantum applications 11 – 13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher 14 – 18 . Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures 19 – 21 . We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation. Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07160-2</identifier><identifier>PMID: 38538941</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1000/1017 ; 639/766/483/2802 ; 639/925/927/481 ; Accuracy ; Algorithms ; Cooling ; Cooling power ; Cryostats ; Electric noise ; Electrons ; Entangled states ; Fault tolerance ; Humanities and Social Sciences ; Machine learning ; multidisciplinary ; Parity ; Quantum computers ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Radio frequency ; Science ; Science (multidisciplinary) ; Silicon ; Thermal analysis ; Thermal energy</subject><ispartof>Nature (London), 2024-03, Vol.627 (8005), p.772-777</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 28, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-2d37d0f9484730de583c88a03ab4c42c5baac4900945a4fff5c0070d265018303</cites><orcidid>0000-0003-0134-3657 ; 0000-0001-7445-699X ; 0000-0003-4387-670X ; 0000-0002-2832-3237 ; 0000-0002-3950-1174 ; 0000-0002-1729-3052 ; 0009-0005-4220-1825 ; 0000-0002-2042-4754 ; 0000-0002-7209-9180 ; 0000-0001-7127-5982 ; 0000-0002-8713-150X ; 0000-0002-4765-2810 ; 0000-0002-8894-7383 ; 0000-0003-2588-7683 ; 0000-0003-1389-5096 ; 0000-0001-7892-7963 ; 0000-0003-2588-6322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07160-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07160-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38538941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jonathan Y.</creatorcontrib><creatorcontrib>Su, Rocky Y.</creatorcontrib><creatorcontrib>Lim, Wee Han</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>van Straaten, Barnaby</creatorcontrib><creatorcontrib>Severin, Brandon</creatorcontrib><creatorcontrib>Gilbert, Will</creatorcontrib><creatorcontrib>Dumoulin Stuyck, Nard</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Cifuentes, Jesus D.</creatorcontrib><creatorcontrib>Hansen, Ingvild</creatorcontrib><creatorcontrib>Seedhouse, Amanda E.</creatorcontrib><creatorcontrib>Vahapoglu, Ensar</creatorcontrib><creatorcontrib>Leon, Ross C. C.</creatorcontrib><creatorcontrib>Abrosimov, Nikolay V.</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L. W.</creatorcontrib><creatorcontrib>Hudson, Fay E.</creatorcontrib><creatorcontrib>Escott, Christopher C.</creatorcontrib><creatorcontrib>Ares, Natalia</creatorcontrib><creatorcontrib>Bartlett, Stephen D.</creatorcontrib><creatorcontrib>Morello, Andrea</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Dzurak, Andrew S.</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><title>High-fidelity spin qubit operation and algorithmic initialization above 1 K</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale 1 – 10 . However, the operation of the large number of qubits required for advantageous quantum applications 11 – 13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher 14 – 18 . Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures 19 – 21 . We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation. Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.</description><subject>639/766/119/1000/1017</subject><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cooling</subject><subject>Cooling power</subject><subject>Cryostats</subject><subject>Electric noise</subject><subject>Electrons</subject><subject>Entangled states</subject><subject>Fault tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Parity</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Radio frequency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><subject>Thermal analysis</subject><subject>Thermal energy</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kb1OHDEUhS2UKCybvAAFGikNjeH6b-ypEELhRyClgdryeDy7RrP2Ys8gkafHsAshKahcnO-e66sPoX0CRwSYOs6cCFVjoByDJDVguoNmhMsa81rJL2gGQBUGxepdtJfzPQAIIvk3tMuUYKrhZIauL_1iiXvfucGPT1Ve-1A9TK0fq7h2yYw-hsqErjLDIiY_LlfeVj740ZvB_9nGbXx0Famuv6OvvRmy-7F95-ju_Nft2SW--X1xdXZ6gy2n9Yhpx2QHfcMVlww6JxSzShlgpuWFsKI1xvIGoOHC8L7vhQWQ0NFaAFEM2BydbHrXU7tynXVhTGbQ6-RXJj3paLz-Nwl-qRfxURNoJJVl3xwdbhtSfJhcHvXKZ-uGwQQXp6wZEA7AQTQF_fkfeh-nFMp9haKCNaQmpFB0Q9kUc06uf_8NAf0iS29k6SJLv8rStAwdfLzjfeTNTgHYBsglCguX_u7-pPYZaSafIQ</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Huang, Jonathan Y.</creator><creator>Su, Rocky Y.</creator><creator>Lim, Wee Han</creator><creator>Feng, MengKe</creator><creator>van Straaten, Barnaby</creator><creator>Severin, Brandon</creator><creator>Gilbert, Will</creator><creator>Dumoulin Stuyck, Nard</creator><creator>Tanttu, Tuomo</creator><creator>Serrano, Santiago</creator><creator>Cifuentes, Jesus D.</creator><creator>Hansen, Ingvild</creator><creator>Seedhouse, Amanda E.</creator><creator>Vahapoglu, Ensar</creator><creator>Leon, Ross C. C.</creator><creator>Abrosimov, Nikolay V.</creator><creator>Pohl, Hans-Joachim</creator><creator>Thewalt, Michael L. W.</creator><creator>Hudson, Fay E.</creator><creator>Escott, Christopher C.</creator><creator>Ares, Natalia</creator><creator>Bartlett, Stephen D.</creator><creator>Morello, Andrea</creator><creator>Saraiva, Andre</creator><creator>Laucht, Arne</creator><creator>Dzurak, Andrew S.</creator><creator>Yang, Chih Hwan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0134-3657</orcidid><orcidid>https://orcid.org/0000-0001-7445-699X</orcidid><orcidid>https://orcid.org/0000-0003-4387-670X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3237</orcidid><orcidid>https://orcid.org/0000-0002-3950-1174</orcidid><orcidid>https://orcid.org/0000-0002-1729-3052</orcidid><orcidid>https://orcid.org/0009-0005-4220-1825</orcidid><orcidid>https://orcid.org/0000-0002-2042-4754</orcidid><orcidid>https://orcid.org/0000-0002-7209-9180</orcidid><orcidid>https://orcid.org/0000-0001-7127-5982</orcidid><orcidid>https://orcid.org/0000-0002-8713-150X</orcidid><orcidid>https://orcid.org/0000-0002-4765-2810</orcidid><orcidid>https://orcid.org/0000-0002-8894-7383</orcidid><orcidid>https://orcid.org/0000-0003-2588-7683</orcidid><orcidid>https://orcid.org/0000-0003-1389-5096</orcidid><orcidid>https://orcid.org/0000-0001-7892-7963</orcidid><orcidid>https://orcid.org/0000-0003-2588-6322</orcidid></search><sort><creationdate>20240328</creationdate><title>High-fidelity spin qubit operation and algorithmic initialization above 1 K</title><author>Huang, Jonathan Y. ; Su, Rocky Y. ; Lim, Wee Han ; Feng, MengKe ; van Straaten, Barnaby ; Severin, Brandon ; Gilbert, Will ; Dumoulin Stuyck, Nard ; Tanttu, Tuomo ; Serrano, Santiago ; Cifuentes, Jesus D. ; Hansen, Ingvild ; Seedhouse, Amanda E. ; Vahapoglu, Ensar ; Leon, Ross C. C. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Escott, Christopher C. ; Ares, Natalia ; Bartlett, Stephen D. ; Morello, Andrea ; Saraiva, Andre ; Laucht, Arne ; Dzurak, Andrew S. ; Yang, Chih Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2d37d0f9484730de583c88a03ab4c42c5baac4900945a4fff5c0070d265018303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/119/1000/1017</topic><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cooling</topic><topic>Cooling power</topic><topic>Cryostats</topic><topic>Electric noise</topic><topic>Electrons</topic><topic>Entangled states</topic><topic>Fault tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Parity</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Radio frequency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><topic>Thermal analysis</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jonathan Y.</creatorcontrib><creatorcontrib>Su, Rocky Y.</creatorcontrib><creatorcontrib>Lim, Wee Han</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>van Straaten, Barnaby</creatorcontrib><creatorcontrib>Severin, Brandon</creatorcontrib><creatorcontrib>Gilbert, Will</creatorcontrib><creatorcontrib>Dumoulin Stuyck, Nard</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Cifuentes, Jesus D.</creatorcontrib><creatorcontrib>Hansen, Ingvild</creatorcontrib><creatorcontrib>Seedhouse, Amanda E.</creatorcontrib><creatorcontrib>Vahapoglu, Ensar</creatorcontrib><creatorcontrib>Leon, Ross C. C.</creatorcontrib><creatorcontrib>Abrosimov, Nikolay V.</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L. W.</creatorcontrib><creatorcontrib>Hudson, Fay E.</creatorcontrib><creatorcontrib>Escott, Christopher C.</creatorcontrib><creatorcontrib>Ares, Natalia</creatorcontrib><creatorcontrib>Bartlett, Stephen D.</creatorcontrib><creatorcontrib>Morello, Andrea</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Dzurak, Andrew S.</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jonathan Y.</au><au>Su, Rocky Y.</au><au>Lim, Wee Han</au><au>Feng, MengKe</au><au>van Straaten, Barnaby</au><au>Severin, Brandon</au><au>Gilbert, Will</au><au>Dumoulin Stuyck, Nard</au><au>Tanttu, Tuomo</au><au>Serrano, Santiago</au><au>Cifuentes, Jesus D.</au><au>Hansen, Ingvild</au><au>Seedhouse, Amanda E.</au><au>Vahapoglu, Ensar</au><au>Leon, Ross C. C.</au><au>Abrosimov, Nikolay V.</au><au>Pohl, Hans-Joachim</au><au>Thewalt, Michael L. W.</au><au>Hudson, Fay E.</au><au>Escott, Christopher C.</au><au>Ares, Natalia</au><au>Bartlett, Stephen D.</au><au>Morello, Andrea</au><au>Saraiva, Andre</au><au>Laucht, Arne</au><au>Dzurak, Andrew S.</au><au>Yang, Chih Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fidelity spin qubit operation and algorithmic initialization above 1 K</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-03-28</date><risdate>2024</risdate><volume>627</volume><issue>8005</issue><spage>772</spage><epage>777</epage><pages>772-777</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale 1 – 10 . However, the operation of the large number of qubits required for advantageous quantum applications 11 – 13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher 14 – 18 . Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures 19 – 21 . We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation. Initialization and operation of spin qubits in silicon above 1 K reach fidelities sufficient for fault-tolerant operations at these temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38538941</pmid><doi>10.1038/s41586-024-07160-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0134-3657</orcidid><orcidid>https://orcid.org/0000-0001-7445-699X</orcidid><orcidid>https://orcid.org/0000-0003-4387-670X</orcidid><orcidid>https://orcid.org/0000-0002-2832-3237</orcidid><orcidid>https://orcid.org/0000-0002-3950-1174</orcidid><orcidid>https://orcid.org/0000-0002-1729-3052</orcidid><orcidid>https://orcid.org/0009-0005-4220-1825</orcidid><orcidid>https://orcid.org/0000-0002-2042-4754</orcidid><orcidid>https://orcid.org/0000-0002-7209-9180</orcidid><orcidid>https://orcid.org/0000-0001-7127-5982</orcidid><orcidid>https://orcid.org/0000-0002-8713-150X</orcidid><orcidid>https://orcid.org/0000-0002-4765-2810</orcidid><orcidid>https://orcid.org/0000-0002-8894-7383</orcidid><orcidid>https://orcid.org/0000-0003-2588-7683</orcidid><orcidid>https://orcid.org/0000-0003-1389-5096</orcidid><orcidid>https://orcid.org/0000-0001-7892-7963</orcidid><orcidid>https://orcid.org/0000-0003-2588-6322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-03, Vol.627 (8005), p.772-777
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10972758
source SpringerLink Journals; Nature
subjects 639/766/119/1000/1017
639/766/483/2802
639/925/927/481
Accuracy
Algorithms
Cooling
Cooling power
Cryostats
Electric noise
Electrons
Entangled states
Fault tolerance
Humanities and Social Sciences
Machine learning
multidisciplinary
Parity
Quantum computers
Quantum computing
Quantum dots
Qubits (quantum computing)
Radio frequency
Science
Science (multidisciplinary)
Silicon
Thermal analysis
Thermal energy
title High-fidelity spin qubit operation and algorithmic initialization above 1 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fidelity%20spin%20qubit%20operation%20and%20algorithmic%20initialization%20above%201%20K&rft.jtitle=Nature%20(London)&rft.au=Huang,%20Jonathan%20Y.&rft.date=2024-03-28&rft.volume=627&rft.issue=8005&rft.spage=772&rft.epage=777&rft.pages=772-777&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07160-2&rft_dat=%3Cproquest_pubme%3E3014004059%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3025391611&rft_id=info:pmid/38538941&rfr_iscdi=true